Advertisement

Optical Review

, Volume 26, Issue 6, pp 693–698 | Cite as

Size measurement of Daphnia pulex using low-coherence Gabor digital holography

  • Kota Sunayama
  • Hitoshi Miyakawa
  • Yoshio HayasakiEmail author
Regular Paper
  • 52 Downloads

Abstract

We measured the size of Daphnia pulex (D. pulex), which is an indicator organism used for examining toxicity, under freely-swimming and stress-free conditions, made possible by the post-focusing ability of digital holography (DH). This environmental measurement is a new application of DH. This implementation, which is a key point of this research, should be applicable to real on-site use in non-sterile and unstable mechanical situations. Through trial and error, we arrived at the simplest interferometer configuration using a single beam line that can withstand vibrations, a low-coherence light source for reducing coherent noise, and single-shot image capturing. Automatic size measurement based on DH with image processing was performed. The originality of this research is the quantitative size measurement and performance estimation achieved by comparing the results with those from conventional manual eye measurement using ordinary optical microscope observation and image processing software. The estimation also allowed us to determine the proper parameters in the image processing for DH measurement.

Notes

References

  1. 1.
    Iguchi, T., Watanabe, H., Katsu, Y.: Application of ecotoxicogenomics for studying endocrine disruption in vertebrates and invertebrates. Environ. Health Perspect 114(Suppl 1), 101–105 (2005)CrossRefGoogle Scholar
  2. 2.
    Gelbke, H.P., Kayser, M., Poole, A.: OECD test strategies and methods for endocrine disruptors. Toxicology 205, 17–25 (2004)CrossRefGoogle Scholar
  3. 3.
    Hanazato, T.: Growth analysis of Daphnia early juvenile stages as an alternative method to test the chronic effect of chemicals. Chemosphere 36, 1903–1909 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Slooff, W., Canton, J.H., Hermens, J.L.M.: Comparison of the suscepribility of 22 freshwater species to 15 chemical compounds. I. (Sub) acute toxicity tests. Aquatic Toxicol. 4, 113–128 (1983)CrossRefGoogle Scholar
  5. 5.
    OECD: Daphnia sp. acute immobilisation test and reproduction test. In: OECD Guidelines for Testing of Chemicals 202. Organization for Economic Cooperation and Development, Paris (1984)Google Scholar
  6. 6.
    OECD: Daphnia magna Reproduction Test. In: OECD Guidelines for Testing of Chemicals 211. Organization for Economic Cooperation and Development. Paris (1998)Google Scholar
  7. 7.
    Lazorchak, J.M., Smith, M.E., Haring, H.J.: Development and validation of a Daphnia magna four-day survival and growth test method. Environ. Toxicol. Chem. 28, 1028–1034 (2009)CrossRefGoogle Scholar
  8. 8.
    Meinertz, J.R., Greseth, S.L., Gaikowski, M.P., Schmidt, L.J.: Chronic toxicity of hydrogen peroxide to Daphnia magna in a continuous exposure, flow-through test system. Sci. Total Environ. 392, 225–232 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Karel, A.C., Schamphelaere, D., Janssen, C.R.: Effects of chronic dietary copper exposure on growth and reproduction of Daphnia magna. Environ. Toxicol. Chem. 23, 2038–2047 (2004)CrossRefGoogle Scholar
  10. 10.
    Acharya, K., Schulman, C., Young, M.H.: Physiological response of Daphnia magna to linear anionic polyacrylamide: ecological implications for receiving waters. Water Air Soil Pollut. 212, 309–317 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Hosmer, A.J., Warren, L.W., Ward, T.J.: Chronic toxicity of pulse-dosed fenoxycarb to Daphnia magna exposed to environmentally realistic concentrations. Environ. Toxicol. Chem. 17, 1860–1866 (1998)CrossRefGoogle Scholar
  12. 12.
    Suzuki, A., Kato, Y., Matsuura, T., Watanabe, H.: Growth evaluation method by live imaging of Daphnia magna and its application to the estimation of an insect growth regulator. J. Appl. Toxicol. 35, 68–74 (2015)CrossRefGoogle Scholar
  13. 13.
    Onural, L., Scott, P.D.: Digital recording of in-line holograms. Opt. Eng. 26, 1124–1132 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    Schnars, U., Jüptner, W.: Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33, 179–181 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    Kim, M.K.: Principles and techniques of digital holographic microscopy. SPIE Rev. 1, 018005 (2010)Google Scholar
  16. 16.
    Watson, J.: Underwater visual inspection and measurement using optical holography. Opt Lasers Eng 16, 375–390 (1997)CrossRefGoogle Scholar
  17. 17.
    Owen, R.B., Zozulya, A.A.: In-line digital holographic sensor for monitoring and characterizing marine particulates. Opt. Eng. 39, 2187–2197 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    Xu, W., Jericho, M.H., Kreuzer, H.J., Meinertzhagen, I.A.: Tracking particles in four dimensions with in-line holographic microscopy. Opt. Lett. 28, 164–166 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Sun, H., Benzie, P.W., Burns, N., Hendry, D.C., Player, M.A., Watson, J.: Underwater digital holography for studies of marine plankton. Philos. Trans. R. Soc. A 366, 20072187 (2008)CrossRefGoogle Scholar
  20. 20.
    Watson, J.: Submersible digital holographic cameras and their application to marine science. Opt. Eng. 50, 091313 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Yourassowsky, C., Dubois, F.: High throughput holographic imaging-in-flow for the analysis of a wide plankton size range. Opt. Express 22, 6661–6673 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    V. V. Dyomin and A. S. Olshukov, “Digital holographic video of plankton,” Proc. SPIE 7073, Applications of Digital Image Processing XXXI, 70732B (2008).Google Scholar
  23. 23.
    Dyomin, V.V., Olshukov, A.S.: Digital holographic video for studying biological particles. J. Opt. Technol. 79(7), 344–347 (2012).  https://doi.org/10.1038/nrn3743 CrossRefGoogle Scholar
  24. 24.
    Xu, W., Jericho, M.H., Meinertzhagen, I.A., Kreuzer, H.J.: Digital in-line holography for biological applications. Proc. Natl. Acad. Sci. USA 98, 11301 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    Xu, W., Jericho, M.H., Meinertzhagen, I.A., Kreuzer, H.J.: Digital in-line holography of microspheres. Appl. Opt. 41, 5367–5375 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Garcia-Sucerquia, J., Xu, W.B., Jericho, S.K., Klages, P., Jericho, M.H., Kreuzer, H.J.: Digital in-line holographic microscopy. Appl. Opt. 45(7), 836–850 (2006).  https://doi.org/10.1111/j.1532-5415.1976.tb06801.x ADSCrossRefGoogle Scholar
  27. 27.
    Molony, K.M., Hennelly, B.M., Kelly, D.P., Naughton, T.J.: Reconstruction algorithms applied to in-line Gabor digital holographic microscopy. Opt. Commun. 283, 903–909 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Pedrini, G., Tiziani, H.J.: Short-coherence digital microscopy by use of a lensless holographic imaging system. Appl. Opt. 41, 4489 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    Repetto, L., Piano, E., Pontiggia, C.: Lensless digital holographic microscope with light-emitting diode illumination. Acta Psychiatrica Scandinavica 532, 1132–1134 (1976)ADSCrossRefGoogle Scholar
  30. 30.
    Higuchi, T., Pham, Q.D., Hasegawa, S., Hayasaki, Y.: Three-dimensional positioning of optically trapped nanoparticles. Journal of Affective Disorders 27, H183–H188 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    Goto, K., Hayasaki, Y.: Three-dimensional motion detection of a 20-nm gold nanoparticle using twilight-field digital holography with coherence regulation. Opt. Lett. 40, 3344–3347 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 3.10.Google Scholar
  33. 33.
    Dubois, F., Schockaert, C., Callens, N., Yourassowsk, C.: Focus plane detection criteria in digital holography microscopy by amplitude analysis. Opt. Express 14(2), 5895–5908 (2006).  https://doi.org/10.1007/BF02900200 ADSCrossRefGoogle Scholar
  34. 34.
    P. Langehanenberg, B. Kemper, D. Dirksen, and G. v. Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008).CrossRefGoogle Scholar
  35. 35.
    Liebling, M., Unser, M.: Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion. J. Opt. Soc. Am. A 21, 2424–2430 (2004)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Fonseca, E.S.R., Fiadeiro, P.T., Pereira, M., Pinheiro, A.: Comparative analysis of autofocus functions in digital in-line phase-shifting holography. Appl. Opt. 55, 7663–7674 (2016)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  1. 1.Center for Optical Research and Education (CORE)Utsunomiya UniversityUtsunomiyaJapan
  2. 2.Center for Bioscience Research and Education (C-Bio)Utsunomiya UniversityUtsunomiyaJapan

Personalised recommendations