Asymmetric multiple-image interference cryptosystem using discrete cosine transform and conditional decomposition

  • Guanghui RenEmail author
  • Jianan Han
  • Jiahui Fu
  • Mingguang Shan
Regular Paper


In this study, we propose an asymmetric multiple-image encryption technique based on optical interference that utilizes the discrete cosine transform (DCT) and conditional decomposition. First, the DCT spectrum of each original image is cropped by a low-pass filter and spatially multiplexed into a synthetized spectral signal with the same size as the original image. The synthetized spectral signal is then transformed by the DCT to the spatial domain. After undergoing pixel-scrambling, the synthetized signal is encrypted into three phase-only masks (POMs) based on the interference in the discrete multiple-parameter fractional Fourier transform domain and conditional decomposition. One of the POMs is a plaintext-independent cyphertext and the other two are plaintext-dependent private keys. The silhouette of the original image cannot be identified using only one or two of the POMs, all POMs are required. Finally, we demonstrate the performance of our technique through simulations.


Optical interference Multiple-image encryption Conditional decomposition 



  1. 1.
    Refregier, P., Javidi, B.: Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 20, 767–769 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    Tao, R., Xin, Y., Wang, Y.: Double image encryption based on random phase encoding in the fractional Fourier domain. Opt. Express 15, 16067–16079 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Situ, G., Zhang, J.: Double random-phase encoding in the Fresnel domain. Opt. Lett. 29, 1584–1586 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Shan, M., Chang, J., Zhong, Z., Hao, B.: Double image encryption based on discrete multiple-parameter fractional Fourier transform and chaotic maps. Opt. Commun. 285, 4227–4234 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Liu, Z., Guo, Q., Xu, L., Ahmad, M.A., Liu, S.: Double image encryption by using iterative random binary encoding in gyrator domains. Opt. Express 18, 12033–12043 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Zhou, N., Wang, Y., Gong, L., Chen, X., Yang, Y.: Novel color image encryption algorithm based on the reality preserving fractional Mellin transform. Opt. Laser Technol. 44, 2270–2281 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Sui, L., Duan, K., Liang, J., Hei, X.: Asymmetric double-image encryption based on cascaded discrete fractional random transform and logistic maps. Opt Express 22, 10605–10621 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Tao, R., Lang, J., Wang, Y.: Optical image encryption based on the multiple-parameter fractional Fourier transform. Opt. Lett. 33, 581–583 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Qin, W., Peng, X.: Asymmetric cryptosystem based on phase-truncated Fourier transforms. Opt. Lett. 35, 118–120 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Wang, X., Zhao, D.: Security enhancement of a phase-truncation based image encryption algorithm. Appl. Opt. 50, 6645–6651 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Liansheng, S., Bei, Z., Zhanmin, W., Qindong, S.: Amplitude-phase retrieval attack free image encryption based on two random masks and interference. Opt. Laser Eng. 86, 1–10 (2016)CrossRefGoogle Scholar
  12. 12.
    Sinha, A.: Nonlinear optical cryptosystem resistant to standard and hybrid attacks. Opt. Laser Eng. 81, 79–86 (2016)CrossRefGoogle Scholar
  13. 13.
    Wang, X., Zhao, D.: Amplitude-phase retrieval attack free cryptosystem based on direct attack to phase-truncated Fourier-transform-based encryption using a random amplitude mask. Opt. Lett. 38, 3684–3686 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Zhang, Y., Wang, B.: Optical image encryption based on interference. Opt. Lett. 33, 2443–2445 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Zhong, Z., Qin, H., Liu, L., Zhang, Y., Shan, M.: Silhouette-free image encryption using interference in the multiple-parameter fractional Fourier transform domain. Opt. Express 25, 6974 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Lin, C., Shen, X., Lei, M.: Generation of plaintext-independent private key based on conditional decomposition strategy. Opt. Laser Eng. 86, 303–308 (2016)CrossRefGoogle Scholar
  17. 17.
    Niu, C., Wang, X., Lv, N., Zhou, Z., Li, X.: An encryption method with multiple encrypted keys based on interference principle. Opt. Express 18, 7827–7834 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Chen, W., Chen, X.: Optical multiple-image encryption based on multiplane phase retrieval and interference. J. Opt. 13, 115401 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Qin, Y., Gong, Q.: Interference-based multiple-image encryption with silhouette removal by position multiplexing. Appl Opt. 52, 3987 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Qin, Y., Jiang, H., Gong, Q.: Interference-based multiple-image encryption by phase-only mask multiplexing with high quality retrieved images. Opt. Laser Eng. 62, 95–102 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Zhang, X., Meng, X., Wang, Y., Yang, X., Yin, Y., Li, X., Peng, X., He, W., Dong, G., Chen, H.: Hierarchical multiple-image encryption based on the cascaded interference structure and vector stochastic decomposition algorithm. Opt. Laser Eng. 107, 258–264 (2018)CrossRefGoogle Scholar
  22. 22.
    Alfalou, A., Brosseau, C., Abdallah, N., Jridi, M.: Simultaneous fusion, compression, and encryption of multiple images. Opt. Express 19, 24023–24029 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Deng, P., Diao, M., Shan, M., Zhong, Z., Zhang, Y.: Multiple-image encryption using spectral cropping and spatial multiplexing. Opt. Commun. 359, 234–239 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Carnicer, A., Montes-Usategui, M., Arcos, S., Juvells, I.: Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys. Opt. Lett. 30, 1644–1646 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Lu, D., He, W., Liao, M., Peng, X.: Discussion and a new method of optical cryptosystem based on interference. Opt. Laser Eng. 89, 13–21 (2017)CrossRefGoogle Scholar
  26. 26.
    Zhao, J., Lu, H., Song, X., Li, J., Ma, Y.: Optical image encryption based on multistage fractional Fourier transforms and pixel scrambling technique. Opt. Commun. 249, 493–499 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Zhang, Y., Wang, B., Dong, Z.: Enhancement of image hiding by exchanging two phase masks. J. Opt. A Pure Appl Opt 11, 125406 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Wang, X., Zhao, D.: Optical image hiding with silhouette removal based on the optical interference principle. Appl. Opt. 51, 686–691 (2012)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  1. 1.School of Electronics and Information EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.College of Information and Communication EngineeringHarbin Engineering UniversityHarbinPeople’s Republic of China

Personalised recommendations