Advertisement

Optical Review

, Volume 26, Issue 6, pp 659–663 | Cite as

Discussion on the sensitivity of optical cables based on distributed acoustic sensing

  • Ying ShangEmail author
  • Chen Wang
  • Jia-sheng Ni
  • Wen-an Zhao
  • Chang Li
  • Bing Cao
  • Sheng Huang
  • Chang Wang
  • Gang-ding Peng
Regular Paper
  • 80 Downloads

Abstract

Distributed acoustic sensing (DAS) technology plays an increasingly important role in the field of underwater acoustic detection because of its own advantages. To measure acoustic pressure sensitivity of seven kinds of optical cables in the same condition synchronously, the experimental setup based on DAS is proposed. Seven kinds of optical cables are connected in series to the DAS system, and the acoustic pressure sensitivity at different locations (different optical cables) is detected simultaneously via the DAS system. The highest acoustic pressure sensitivity of the sensitized optical cable is 69.9 mrad/Pa. The experimental results provide experimental data support for the selection of optical cables.

Keywords

Distributed acoustic sensing The acoustic pressure sensitivity Optical cables Acoustic detection 

Notes

Funding

The paper is supported by the National Natural Science Foundation of China (Grant number. 61605101) and the focus of R&D projects of Shandong Province (no. 2019GSF111065).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Cranch, G.A., Kirkendall, C.K., Daley, K.: Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array. IEEE Photonics Technol Lett 15(11), 1579–1581 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Hill, D.J., Nash, P.J., Jackson, D.A.: Fiber laser hydrophone array. J Proc SPIE 3860, 55–66 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Wear, K.A., Yunbo, L., Gammell, P.M.: Correction for Frequency-dependent hydrophone response to nonlinear pressure waves using complex deconvolution and rarefactional filtering: application with fiber optic hydrophones. IEEE Trans Ultrason Ferroelectr Freq Control 62(1), 151–163 (2015)CrossRefGoogle Scholar
  4. 4.
    Zhang, W.T., Liu, Y.L., Li, F.: Fiber laser hydrophone based on double diaphragms: Theory and experiment. J Lightwave Technol 26(10), 1349–1352 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Kim, K.S., Mizuno, Y., Nakamura, K.: Fiber-optic ultrasonic hydrophone using short Fabry–Perot cavity with multilayer reflectors deposited on small stub. Ultrasonics 54, 1047–1051 (2014)CrossRefGoogle Scholar
  6. 6.
    Zhang, F.X., Zhao, W.T., Li, F.: DFB fiber laser hydrophone with an acoustic low-pass filter. IEEE Photonics Technol Lett 23(17), 1264–1266 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Ma, L.N., Hu, Y.M., Luo, H.: DFB fiber laser hydrophone with flat frequency response and enhanced acoustic pressure sensitivity. IEEE Photonics Technol Lett 21(17), 1280–1282 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Bian, P., Wu, Y., Jia, B.: Dual-wavelength Sagnac interferometer as perimeter sensor with Rayleigh backscatter rejection. Opt Eng 53, 044111 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Chen, Q.M., Jin, C., Bao, Y.: A distributed fiber vibration sensor utilizing dispersion induced walk-off effect in a unidirectional Mach-Zehnder interferometer. Opt Express 22(3), 2167–2173 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Wei, P., Shan, X.K., Sun, X.H.: Frequency response of distributed fiber-optic vibration sensor based on non-balanced Mach-Zehnder interferometer. Optical Fiber Technology. 19, 47–51 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Huang, S.Y., Jin, X.F., Zhang, J.: An optical fiber hydrophone using equivalent phase shift fiber Bragg grating for underwater acoustic measurement. Photonic Sensors. 1(3), 1289–1294 (2011)CrossRefGoogle Scholar
  12. 12.
    Lee, J., Jeong, H.: Design of resonant acoustic sensors using fiber Bragg gratings. Meas Sci Technol 21, 057001 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Zhang, W.T., Liu, Y.L., Li, F.: Fiber Bragg grating hydrophone with high sensitivity. Chin Opt Lett 6(9), 631–633 (2008)CrossRefGoogle Scholar
  14. 14.
    Niu, S.L., Hu, Y.M., Hu, Z.L.: Fiber Fabry–Pérot hydrophone based on push–pull structure and differential detect. IEEE Photonics Technol Lett 23(20), 1499–1501 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Li, D.M.: Research on key technology interferometric hydrophone of fiber Bragg grating. Zhejiang University, pp. 8–10 (2013)Google Scholar
  16. 16.
    Okawara, C., Saijyou, K.: Fiber optic interferometric hydrophone using fiber Bragg grating with wavelength division multiplexing. Acoust Sci Techol 29(3), 232–234 (2008)CrossRefGoogle Scholar
  17. 17.
    Chen, D., Liu, Q.W., Fan, X.Y.: Distributed fiber-optic acoustic sensor with enhanced response bandwidth and high signal-to-noise ratio. J Lightwave Technol 35(10), 2037–2043 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Lu, B., Pan, Z.Q., Wang, Z.Y.: High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse. Opt Lett 42(3), 391–394 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Liu, T.G., Yu, Z., Jiang, J.F.: Advances of some critical technologies in discrete and distributed optical fiber sensing research. Acta Phys Sin 66(7), 070705 (2017)Google Scholar
  20. 20.
    Muanenda, Y.: Recent advances in distributed acoustic sensing based on phase-sensitive optical time domain reflectometry. J Sens 2018, 1–16 (2018)CrossRefGoogle Scholar
  21. 21.
    Shang, Y., Wang, C., Wang, C.: Optical distributed vibration sensing of perimeter security based on space difference of Rayleigh backscattering. Infrared Laser Eng 47(5), 0522001 (2018)CrossRefGoogle Scholar
  22. 22.
    Nakazawa, M.: Rayleigh backscattering theory for single-mode optical fibers. J Opt Soc Am 73(9), 1175–1180 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    Juskaitis, R.: Interferometry with Rayleigh backscattering in a single-mode optical fiber. Opt Lett 19(3), 225–227 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    Dandridge, A., Tvcten, A.B., Giallorenzi, T.G.: Homodyne Demodulation schemes for fiber optic sensor using phase generated carrier. IEEE J Quantum Electron 10, 1647–1651 (1982)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  1. 1.Laser Institute, Qilu University of Technology (Shandong Academy of Sciences)JinanChina
  2. 2.School of Electrical Engineering and TelecommunicationsUniversity of New South WalesSydneyAustralia

Personalised recommendations