Optical Review

, Volume 26, Issue 6, pp 561–567 | Cite as

Analytical solutions for the subsidiary maxima in multiple slit interference

  • Heung-Ryoul NohEmail author
Regular Paper


We present analytical solutions for the subsidiary maxima in multiple slit interference up to eleven slits. For the number of slits N, there exist \(N-2\) subsidiary maxima between the two adjacent principal maxima. By analytically solving the derivative of the diffracted intensity function with respect to the phase difference, the angular positions and amplitudes of the \(N-2\) subsidiary maxima are expressed in succinct analytical forms for multiple slits with \(N \le 11\).


Multiple slit Diffraction Subsidiary maxima 



This study was financially supported by Chonnam National University (Grant Number: 2017-2878). This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (2017R1A2B4003483).


  1. 1.
    Jewett Jr., J.W., Serway, R.A.: Serway’s Principles of Physics, 5th edn. Brooks/Cole-Thomson Learning, Belmont (2006)Google Scholar
  2. 2.
    Halliday, D., Resnick, R., Walker, J.: Fundamentals of Physics, 10th edn. Wiley, New York (2014)zbMATHGoogle Scholar
  3. 3.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, Addison-Wesley, Reading. Vol. 1, Chap. 30 (2010)Google Scholar
  4. 4.
    Hecht, E.: Optics. Addison-Wesley, Reading (2002)Google Scholar
  5. 5.
    Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  6. 6.
    Pedrotti, F.L., Pedrotti, L.S., Pedrotti, L.M.: Introduction to Optics. Prentice-Hall, Englewood Cliffs (2007)Google Scholar
  7. 7.
    Guenther, B.D.: Modern Optics. Oxford University Press, New York (2015)CrossRefGoogle Scholar
  8. 8.
    Crawford Jr., F.S.: Waves. McGraw-Hill, New York (1994)Google Scholar
  9. 9.
    Sommerfeld, A.: Optics. Academic Press, New York (1964)Google Scholar
  10. 10.
    Lipson, A., Lipson, S.G., Lipson, H.: Optical Physics. Cambridge University Press, Cambridge (2011)zbMATHGoogle Scholar
  11. 11.
    Goodman, J.W.: Introduction to Fourier Optics. Roberts and Company, Englewood (2005)Google Scholar
  12. 12.
    Rank, D.H.: The multiple-slit diffraction pattern. Am. J. Phys. 20, 453–453 (1952)ADSCrossRefGoogle Scholar
  13. 13.
    Bucher, M., Siemens, D.P.: Unified diagram for Fraunhofer diffraction and interference patterns from single, double, and multiple slits. Am. J. Phys. 57, 902–907 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    Mechtly, B., Bartlett, A.A.: Graphical representations of Fraunhofer interference and diffraction. Am. J. Phys. 62, 501–510 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    Otsuki, T.: Diffraction by multiple slits. J. Opt. Soc. Am. A 7, 646–652 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    Hecht, E.: Optics, p. 449. Addison-Wesley, Reading (2002)Google Scholar
  17. 17.
    Crawford Jr., F.S.: Waves, p. 483. McGraw-Hill, New York (1994)Google Scholar
  18. 18.
    Hecht, E.: Optics, p. 462. Addison-Wesley, Reading (2002)Google Scholar
  19. 19.
    Sommerfeld, A.: Optics, p. 184. Academic Press, New York (1964)Google Scholar
  20. 20.
    Noh, H.R.: Subsidiary and principal maxima in multiple-slit interference. J. Korean Phys. Soc. 74, 626–629 (2019)ADSCrossRefGoogle Scholar
  21. 21.
    Jönsson, C.: Electron diffraction at multiple slits. Am. J. Phys. 42, 4–11 (1974)ADSCrossRefGoogle Scholar
  22. 22.
    Woan, G.: The Cambridge Handbook of Physics Formulas. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  23. 23.
    Yacoub, M.D., Fraidenraich, G.: A solution to the quartic equation. Math. Gazette 96, 271–275 (2012)CrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  1. 1.Department of PhysicsChonnam National UniversityGwangjuKorea

Personalised recommendations