Advertisement

Complex amplitude mapping based on adaptive autofocusing algorithm

  • Koshi KomuroEmail author
  • Kazusa Oe
  • Yosuke Tamada
  • Takanori Nomura
Regular Paper
  • 35 Downloads

Abstract

Since a complex amplitude distribution can be obtained in only a single two-dimensional plane using conventional imaging techniques, it is hard to obtain in-focus complex amplitude of three-dimensional structure (not a thin object) or multiple objects in different depth positions. The disadvantage often turns an obstacle to practical applications such as cell observation, particle measurement, and industrial inspection. To overcome the problem, adaptive autofocusing algorithm (AAA) is proposed. AAA consists of a complex amplitude measurement, numerical propagation, and local sharpness evaluation. In the proposed method, object positions can be determined for each pixel in the complex amplitude distribution using adaptively chosen area size of local sharpness evaluation. The proposed method gives a complex amplitude distribution which focuses on all objects or structure over an entire field of view. An optical experiment is carried out using the transport of intensity equation as a complex amplitude measurement. Performance of the proposed method is confirmed using living leaves of the moss Physcomitrella patens. Experimental results show that the object positions can be determined pixelwise and a focused complex amplitude distribution can be obtained by the proposed method.

Keywords

Quantitative phase imaging Image reconstruction Transport of intensity equation Numerical autofocusing 

Notes

References

  1. 1.
    Yamaguchi, I., Zhang, T.: Phase-shifting digital holography. Opt. Lett. 22, 1268 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    Imbe, M., Nomura, T.: Single-exposure phase-shifting digital holography using a random-complex-amplitude encoded reference wave. Appl. Opt. 52, A161 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Gerchberg, R.W., Saxton, W.O.: A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237 (1972)Google Scholar
  4. 4.
    Fienup, J.R.: Phase retrieval algorithms; a comparison. Appl. Opt. 21, 2758 (1982)ADSCrossRefGoogle Scholar
  5. 5.
    Teague, M.R.: Deterministic phase retrieval: a Green’s function solution. J. Opt. Soc. Am. 73, 1434 (1983)ADSCrossRefGoogle Scholar
  6. 6.
    Streibl, N.: Phase imaging by the transport equation of intensity. J. Opt. Commun. 73, 6 (1984)ADSCrossRefGoogle Scholar
  7. 7.
    Langehanenberg, P., Kemper, B., Dirksen, D., Bally, G.: Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging. Appl. Opt. 47, D176 (2008)CrossRefGoogle Scholar
  8. 8.
    Memmolo, P., Distante, C., Paturzo, M., Finizio, A., Ferraro, P., Javidi, B.: Automatic focusing in digital holography and its application to stretched holograms. Opt. Lett. 36, 1945 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    İlhan, H.A., Doğar, M., Özcan, M.: Digital holographic microscopy and focusing methods based on image sharpness. J. Microsc. 255, 138 (2014)CrossRefGoogle Scholar
  10. 10.
    Oh, S., Hwang, C.-Y., Jeong, I.K., Lee, S.-K., Park, J.-H.: Fast focus estimation using frequency analysis in digital holography. Opt. Express 22, 28926 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Zheng, J., Gao, P., Shao, X.: Opposite-view digital holographic microscopy with autofocusing capability. Sci. Rep. 7, 4255 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Komuro, K., Nomura, T.: Object plane detection and phase-amplitude imaging based on transport of intensity equation. Opt. Rev. 24, 626 (2017)CrossRefGoogle Scholar
  13. 13.
    McElhinney, C.P., Hennelly, B.M., Naughton, T.J.: Extended focused imaging for digital holograms of macroscopic three-dimensional objects. Appl. Opt. 47, D71 (2008)CrossRefGoogle Scholar
  14. 14.
    Komuro, K., Yamazaki, Y., Nomura, T.: Transport-of-intensity computational ghost imaging. Appl. Opt. 57, 4451 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Yoneda, N., Saita, Y., Komuro, K., Nobukawa, T., Nomura, T.: Transport-of-intensity holographic data storage based on a computer-generated hologram. Appl. Opt. 57, 8836 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    Jingshan, Z., Claus, R.A., Dauwels, J., Tian, L., Waller, Laura: Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes. Opt. Express 22, 10661 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Barty, A., Nugent, K.A., Roberts, A.: Quantitative optical phase microscopy. Opt. Lett. 23, 1 (1998)CrossRefGoogle Scholar
  18. 18.
    Kaikkonen, V.A., Mäkynen, A.J.: A high sampling rate digital holographic imager instrument for the in situ measurements of hydrometeors. Opt. Rev. 23, 493 (2016)CrossRefGoogle Scholar
  19. 19.
    Fukuda, T., Shinomura, M., Xia, P., Awatsuji, Y., Nishio, K., Matoba, O.: Three-dimensional motion-picture imaging of dynamic object by parallel-phase-shifting digital holographic microscopy using an inverted magnification optical system. Opt. Rev. 24, 206 (2017)CrossRefGoogle Scholar
  20. 20.
    Dorrer, C., Zuegel, J.D.: Optical testing using the transport-of-intensity equation. Opt. Lett. 15, 7165 (2007)Google Scholar
  21. 21.
    Allen, L.J., Oxley, M.P.: Phase retrieval from series of images obtained by defocus variation. Opt. Commun. 199, 65 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Ishizuka, K., Allman, B.: Phase measurement of atomic resolution image using transport of intensity equation. J. Electron Microsc. 54, 191 (2005)Google Scholar
  23. 23.
    Goodman, J.W.: Introduction to Fourier Optics. McGraw-Hill, New York (1996)Google Scholar
  24. 24.
    McElhinney, C.P., McDonald, J.B., Castro, A., Frauel, Y., Javidi, B., Naughton, T.J.: Depth-independent segmentation of macroscopic three-dimensional objects encoded in single perspectives of digital holograms. Opt. Lett. 32, 1229 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Rensing, S.A., Lang, D., Zimmer, A.D., Terry, A., Salamov, A., Shapiro, H., Nishiyama, T., Perroud, P., Lindquist, E.A., Kamisugi, Y., Tanahashi, T., Sakakibara, K., Fujita, T., Oishi, K., Shin-I, T., Kuroki, Y., Toyoda, A., Suzuki, Y., Hashimoto, S., Yamaguchi, K., Sugano, S., Kohara, Y., Fujiyama, A., Anterola, A., Aoki, S., Ashton, N., Barbazuk, W.B., Barker, E., Bennetzen, J.L., Blankenship, R., Cho, S.H., Dutcher, S.K., Estelle, M., Fawcett, J.A., Gundlach, H., Hanada, K., Heyl, A., Hicks, K.A., Hughes, J., Lohr, M., Mayer, K., Melkozernov, A., Murata, T., Nelson, D.R., Pils, B., Prigge, M., Reiss, B., Renner, T., Rombauts, S., Rushton, P.J., Sanderfoot, A., Schween, G., Shiu, S.-H., Stueber, K., Theodoulou, F.L., Tu, H., Van de Peer, Y., Verrier, P.J., Waters, E., Wood, A., Yang, L., Cove, D., Cuming, A.C., Hasebe, M., Lucas, S., Mishler, B.D., Reski, R., Grigoriev, I.V., Quatrano, R.S., Boore, J.L.: The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Schaefer, D.G., Zrÿd, J.-P.: Efficient gene targeting in the moss Physcomitrella patens. Plant J. 11, 1195 (1997)CrossRefGoogle Scholar
  27. 27.
    Kofuji, R., Hasebe, M.: Eight types of stem cells in the life cycle of the moss Physcomitrella patens. Curr. Opin. Plant Biol. 17, 13 (2014)CrossRefGoogle Scholar
  28. 28.
    Li, C., Sako, Y., Imai, A., Nishiyama, T., Thompson, K., Kubo, M., Hiwatashi, Y., Kabeya, Y., Karlson, D., Wu, S.-H., Ishikawa, M., Murata, T., Benfey, P.N., Sato, Y., Tamada, Y., Hasebe, M.: A Lin28 homologue reprograms differentiated cells to stem cells in the moss Physcomitrella patens. Nat. Commun. 8, 14242 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Paganin, D., Barty, A., Mcmahon, P.J., Nugent, K.A.: Quantitative phase-amplitude microscopy. III. The effects of noise. J. Microsc. 214, 51 (2003)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Tamada, Y., Murata, T., Hattori, M., Oya, S., Hayano, Y., Kamei, Y., Hasebe, M.: Optical property analyses of plant cells for adaptive optics microscopy. Int. J. Optomechatron. 8, 89 (2014)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  • Koshi Komuro
    • 1
    Email author
  • Kazusa Oe
    • 1
  • Yosuke Tamada
    • 2
  • Takanori Nomura
    • 3
  1. 1.Graduate School of Systems EngineeringWakayama UniversityWakayamaJapan
  2. 2.Division of Evolutionary BiologyNational Institute for Basic BiologyOkazakiJapan
  3. 3.Faculty of Systems EngineeringWakayama UniversityWakayamaJapan

Personalised recommendations