An off-axis Golay3 sparse aperture telescope with a freeform secondary mirror

  • Junliu Fan
  • Quanying WuEmail author
  • Baohua Chen
  • Weimin Shen
Regular Paper


The application of freeform surface in an optical system can effectively increase the freedom of optical design and reduce the number of optical elements. In this work, a two-mirror off-axis sparse aperture telescope is proposed. The primary mirror is made of three sub-mirrors arranged in the Golay3 configuration while the secondary is a freeform surface defined by a polynomial of two variables X and Y. The off-axis configuration is used to remove the obstruction of the secondary mirror. The results indicate that the fill factor of the Golay3 primary mirror increases to 58.4%, which is significantly higher than that of the on-axis configuration. The image quality is improved within 2.5° full field of view from its spot diagram, distortion, modulation transfer function, and encircled energy.


Sparse aperture Freeform Field of view Fill factor 



This work is supported partially by National Science Foundation of China (NSFC) (61875145, 11804243); Jiangsu Province Key Discipline of China’s 13th 5-year plan (20168765); Jiangsu Key Laboratory of Advanced Optical Manufacture Technology (KJS1710); Suzhou Key Laboratory (SZS201611, SZS201712); and the Six Talent Peaks Project of the Jiangsu Province (DZXX-026). The authors are also grateful to Professor Qian Lin of Soochow University for valuable advices and to Dr. Cao Zongjian of Augusta University in USA for editorial suggestions.


  1. 1.
    Robert, D.F., Theodore, A.T.: Image quality of sparse-aperture designs for remote sensing. Opt. Eng. 41(8), 1957–1968 (2002)CrossRefGoogle Scholar
  2. 2.
    Genet, R., Rowe, D., Clause, M.: Sparse-aperture quasi-meridian telescopes. J. Double Star Obs. 12, 287–294 (2016)ADSGoogle Scholar
  3. 3.
    Johns, M., Mccarthy, P., Raybould, K.: Giant magellan telescope: overview. Proc. SPIE 8444(1), 84441H_1–84441H_16 (2012)Google Scholar
  4. 4.
    Xie, Z.L., Ma, H.T., Qi, B.: Experimental demonstration of enhanced resolution of a Golay3 sparse-aperture telescope. Chin. Opt. Lett. 15(4), 041101_1–041101_4 (2017)Google Scholar
  5. 5.
    Harvey, J.E., Ftaclas, C.: Field-of-view limitations of phased telescope arrays. Appl. Opt. 34(25), 5787–5798 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    O. Lardière, Martinache, F., Patru, F.: Direct imaging with highly diluted apertures—I. Field-of-view limitations. Mon. Not. R. Astron. Soc. 375(3), 977–988 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    Ardenne, A.V., Bregman, J.D., Cappellen, W.A.V.: Extending the field of view with phased array techniques: results of European SKA research. Proc. IEEE 97(8), 1531–1542 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Salvaggio, P.S., Schott, J.R., McKeown, D.M.: Validation of modeled sparse aperture post-processing artifacts. Appl Opt. 56(4), 761–770 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Kuhn, J.R., Moretto, G., Racine, R., et al.: Concepts for a large-aperture, high dynamic range telescope. Publ. Astron. Soc. Pac. 113(790), 1486–1510 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Moretto, G., Kuhn, J.R.: Highly sensitive telescope designs for higher contrast observations. Adv. Opt. Technol. 3(3), 251–264 (2014)ADSGoogle Scholar
  11. 11.
    Kuhn, J.R., Hawley, S.L.: Some astronomical performance advantages of off-axis telescopes. Publ. Astron. Soc. Pac. 111(759), 601–620 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Wynne, C.G.: Field correctors for very large telescopes. Mon. Not. R. Astron. Soc. 280(2), 555–558 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    Gautam, S., Gupta, A., Singh, G.S.: Optical design of off-axis Cassegrain telescope using freeform surface at the secondary mirror. Opt. Eng. 54(2), 025113 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Yabe, A.: Method to allocate freeform surfaces in axially asymmetric optical system. Proc. SPIE 8167(4), 816703_1–816703_10 (2011)Google Scholar
  15. 15.
    Luttrell, D.E.: Machining non-axisymmetric optics, in ASPE Proceedings (ASPE, Rochester, 1990), pp. 31–34Google Scholar
  16. 16.
    Forbes, G.W.: Shape specification for axially symmetric optical surfaces. Opt. Express 15(8), 5218–5226 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Pan, J.H.: The design, manufacture and test of the aspherical optical surfaces, Soochow University Press., pp. 32–35 Su Zhou(2004) Google Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  • Junliu Fan
    • 1
  • Quanying Wu
    • 1
    Email author
  • Baohua Chen
    • 1
  • Weimin Shen
    • 2
  1. 1.Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and PhysicsSuzhou University of Science and TechnologySuzhouChina
  2. 2.School of Optoelectronic Science and EngineeringSoochow UniversitySuzhouChina

Personalised recommendations