Advertisement

Image feature extraction algorithm based on bi-dimensional local mean decomposition

  • Feng-Ping AnEmail author
Regular Paper
  • 18 Downloads

Abstract

The scale invariant feature transform (SIFT) algorithm has been applied to many fields, it has been found that the algorithm has some problems, such as high complexity, it is easily led to the dimensional disaster and it is not completely affine invariant. Some scholars have proposed improved algorithms to solve these problems, but these algorithms were specific to certain solutions and not applicable for comprehensively solving the above problems. To solve these problems, an adaptive image feature extraction algorithm based on bi-dimensional local mean decomposition (BLMD) and SIFT is proposed in this paper. First, adaptive BLMD is used to decompose the image and obtain a number of bi-dimensional production functions (BPFs). Second, the SIFT algorithm based on parameter optimization is used to extract the features of the decomposed BPFs. Finally, we synthesize and process the feature information extracted by the BPFs to obtain all the feature information of the original image. Traditional feature extraction methods and the proposed method are compared and analyzed in three different scenarios involving face database images with different scales and levels of blur. The proposed method yields rich and complete feature information and is beneficial to image matching and registration. Moreover, the proposed is more efficient than other methods. The proposed approach provides a technical method for image adaptive feature extraction and a directional framework for the development and improvement of adaptive image feature extraction schemes.

Keywords

Local mean decomposition Bi-dimensional local mean decomposition SIFT Bi-dimensional production function Image feature extraction 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 61701188).

References

  1. 1.
    Gonzalez, R.C.: Digital image processing. Pearson Education India, Delhi (2009)Google Scholar
  2. 2.
    Scarano, F., Riethmuller, M.L.: Advances in iterative multigrid PIV image processing. Exp. Fluids. 29, 051–060 (2000).  https://doi.org/10.1007/s003480070007 CrossRefGoogle Scholar
  3. 3.
    Carnie, R., Walker, R., Corke, P.: Image processing algorithms for UAV “sense and avoid”. In: ICRA 2006, pp. 2848–2853 (2006).  https://doi.org/10.1109/ROBOT.2006.1642133
  4. 4.
    Semmlow, J.L., Griffel, B.: Biosignal and medical image processing. CRC Press, Florida (2014)Google Scholar
  5. 5.
    Schindelin, J., Arganda-Carreras, I., Frise, E.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012).  https://doi.org/10.1038/nmeth.2019 CrossRefGoogle Scholar
  6. 6.
    Huang, J.Y., Wen, K.L., Li, X.J.: Coseismic deformation time history calculated from acceleration records using an EMD-derived baseline correction scheme: a new approach validated for the 2011 Tohoku earthquake. Bull. Seismol. Soc. Am. 103(2), 1321–1335 (2013).  https://doi.org/10.1785/0120120278 CrossRefGoogle Scholar
  7. 7.
    Arturo, G.-P., Juan, A.-S., Dominguez-Gonzalez, P.: Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis. J. Zhejiang Univ. Sci. A 14(9), 615–630 (2013).  https://doi.org/10.1631/jzus.A1300030 CrossRefGoogle Scholar
  8. 8.
    Huang, W., Shen, Z., Huang, N.E.: Use of intrinsic modes in biology: examples of indicial response of pulmonary blood pressure to step hypoxia. Proc. Natl. Acad. Sci. USA 95, 12766–12771 (1998).  https://doi.org/10.1073/pnas.95.22.12766 ADSCrossRefGoogle Scholar
  9. 9.
    Zheng, J., Cheng, J., Yang, Y.: Generalized empirical mode decomposition and its applications to rolling element bearing fault diagnosis. Mech. Syst. Signal Process. 40(1), 136–153 (2013).  https://doi.org/10.1016/j.ymssp.2013.04.005 ADSCrossRefGoogle Scholar
  10. 10.
    Zhu, K., Song, X., Xue, D.: Incipient fault diagnosis of roller bearings using empirical mode decomposition and correlation coefficient. J. VibroEng. 15(2), 597–603 (2013)Google Scholar
  11. 11.
    Song, H., Bai, Y., Pinheiro, L.: Analysis of ocean internal waves imaged by multichannel reflection seismics, using ensemble empirical mode decomposition. J. Geophys. Eng. 9(3), 302–311 (2012).  https://doi.org/10.1088/1742-2132/9/3/302 CrossRefGoogle Scholar
  12. 12.
    Kumar, P., Henikoff, S., Ng, P.C.: Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4(7), 1073–1081 (2009).  https://doi.org/10.1038/nprot.2009.86 CrossRefGoogle Scholar
  13. 13.
    Bharathi, S., Shenoy, P.D., Venugopal, K.R.: Ensemble PHOG and SIFT features extraction techniques to classify high resolution satellite images. Data Min. Knowl. Eng. 6(5), 199–206 (2014)Google Scholar
  14. 14.
    Rehman, A., Saba, T.: Features extraction for soccer video semantic analysis: current achievements and remaining issues. Artif. Intell. Rev. 41(3), 451–461 (2014).  https://doi.org/10.1007/s10462-012-9319-1 CrossRefGoogle Scholar
  15. 15.
    Reddy, B., Chatterji, B.: An FFT-based technique for translation, rotation and scale-invariant image registration. IEEE Trans. Image Process. 5(12), 1266–1271 (1996).  https://doi.org/10.1109/83.506761 ADSCrossRefGoogle Scholar
  16. 16.
    Moigne, J.L., Campbell, W.J., Cromp, R.F.: An automated parallel image registration technique based on the correlation of wavelet feature. IEEE Trans. Geosci. Remote Sens. 40(8), 1849–2864 (2002).  https://doi.org/10.1109/TGRS.2002.802501 ADSCrossRefGoogle Scholar
  17. 17.
    Lazaridis, G., Petrou, M.: Image registration using the Walsh transform. IEEE Trans. Image Process. 15(8), 2343–2357 (2006).  https://doi.org/10.1109/TIP.2006.877346 ADSCrossRefGoogle Scholar
  18. 18.
    Brown, L.G.: A survey of image registration techniques. ACM Comput. Surv. 24(4), 325–376 (1992).  https://doi.org/10.1145/146370.146374 CrossRefGoogle Scholar
  19. 19.
    Barnea, D.I., Silverman, H.F.: A class of algorithm for fast digital image registration. IEEE Trans. Comput. 21(2), 179–186 (1972).  https://doi.org/10.1109/TC.1972.5008923 CrossRefzbMATHGoogle Scholar
  20. 20.
    Anthony, A., Lofffeld, O.: Image registration using a combination of mutual information and spatial information. In: IEEE International Conference on Geoscience and Remote Sensing Symposium 2006, pp. 4102–4106 (2006).  https://doi.org/10.1109/IGARSS.2006.1029
  21. 21.
    Huang, F.C., Huang, S.Y., Ker, J.W.: High-performance SIFT hardware accelerator for real-time image feature extraction. IEEE Trans. Circuits Syst. Video Technol. 22(3), 340–351 (2012).  https://doi.org/10.1109/TCSVT.2011.2162760 CrossRefGoogle Scholar
  22. 22.
    Dellinger, F., Delon, J., Gousseau, Y.: SAR–SIFT: a SIFT-like algorithm for SAR images. IEEE Trans. Geosci. Remote Sens. 53(1), 453–466 (2015).  https://doi.org/10.1109/TGRS.2014.2323552 ADSCrossRefGoogle Scholar
  23. 23.
    Ali, N., Bajwa, K.B., Sablatnig, R.: A novel image retrieval based on visual words integration of SIFT and SURF. PLos One 11(6), 1–20(2016).  https://doi.org/10.1371/journal.pone.0157428 CrossRefGoogle Scholar
  24. 24.
    Huang, N.E., Shen, Z., Long, S.R.: The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis. Proc. R. Soc. Lond. A. 454(12), 903–995 (1998).  https://doi.org/10.1098/rspa.1998.0193 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Nunes, J.C., Bouaouue, Y., Delechelle, E.: Image analysis by bidimensional empirical mode decomposition. Image Vis. Comput. 21(3), 1019–1026 (2003).  https://doi.org/10.1016/S0262-8856(03)00094-5 CrossRefGoogle Scholar
  26. 26.
    Nunes, J.C., Guyot, S., Delechelle, E.: Texture analysis based on local analysis of the bidimensional empirical mode decomposition. Mach. Vis. Appl. 16(5), 177–188 (2005).  https://doi.org/10.1007/s00138-004-0170-5 CrossRefGoogle Scholar
  27. 27.
    Cai, B., Xiang, J.: Digital image compression based on BEMD and PCA. Comput. Eng. Appl. 47(23), 185–187 (2011).  https://doi.org/10.3778/j.issn.1002-8331.2011.23.052 ADSCrossRefGoogle Scholar
  28. 28.
    He Zhi, W., Qiang, S.Y.: Multivariate gray model-based BEMD for hyperspectral image classification. IEEE Trans. Instrum. Meas. 62(5), 889–904 (2013).  https://doi.org/10.1109/TIM.2013.2246917 CrossRefGoogle Scholar
  29. 29.
    An, F.P., Lin, D.C., Zhou, X.W.: Enhancing image denoising performance of bidimensional empirical mode decomposition by improving the edge effect. Int. J. Antennas Propag. 2015, 1–12 (2015).  https://doi.org/10.1155/2015/769478 CrossRefGoogle Scholar
  30. 30.
    Qiao LiHong, N., KaiFu, W.: Ning: Perfect reconstruction image modulation based on BEMD and quaternionic analytic signals. Sci China Inf Sci. 54(12), 2602–2614 (2011).  https://doi.org/10.1007/s11432-011-4330-8 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Hu, J., Wang, X., Qin, H.: Improved, feature-centric EMD for 3D surface modeling and processing. Graph. Models. 76(5), 340–354 (2014).  https://doi.org/10.1016/j.gmod.2014.03.006 CrossRefGoogle Scholar
  32. 32.
    Ye, Q., Xiang, M., Cui, Z.: Fingerprint image enhancement algorithm based on two dimension emd and gabor filter. Proc. Eng. 29, 1840–1844 (2012).  https://doi.org/10.1016/j.proeng.2012.01.223 CrossRefGoogle Scholar
  33. 33.
    Zhao, J., Zhao, P., Chen, Y.: Using an improved BEMD method to analyse the characteristic scale of aeromagnetic data in the Gejiu region of Yunnan, China. Comput. Geosci. 88, 132–141 (2016).  https://doi.org/10.1016/j.cageo.2015.12.016 ADSCrossRefGoogle Scholar
  34. 34.
    Li, T., Wang, Y.: Biological image fusion using a NSCT based variable-weight method. Inf. Fusion. 12(2), 85–92 (2011).  https://doi.org/10.1016/j.inffus.2010.03.007 CrossRefGoogle Scholar
  35. 35.
    Lin, D.C., Guo, Z.L., An, F.P.: Elimination of end effects in empirical mode decomposition by mirror image coupled with support vector regression. Mech. Syst. Signal Process. 31(1), 13–28 (2012).  https://doi.org/10.1016/j.ymssp.2012.02.012 ADSCrossRefGoogle Scholar
  36. 36.
    Bhuiyan, S., Adhami, R.R., Khan, J.F.: Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation. EURASIP J. Adv. Signal Process. 1, 1–18 (2008).  https://doi.org/10.1155/2008/728356 CrossRefGoogle Scholar
  37. 37.
    Damerval, C.: A fast algorithm for bidimensional EMD. IEEE Signal Process. Lett. 12(10), 701–704 (2005).  https://doi.org/10.1109/LSP.2005.855548 ADSCrossRefGoogle Scholar
  38. 38.
    Wu, Z., Huang, N.E., Chen, X.: The multi-dimensional ensemble empirical mode decomposition method. Adv. Adapt. Data Anal. 1(3), 339–372 (2009).  https://doi.org/10.1142/S1793536909000187 MathSciNetCrossRefGoogle Scholar
  39. 39.
    Rilling, G., Flandrin, P., Gancalves, P.: On empirical mode decomposition and its algorithms. In: Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, vol. 3, pp. 8–11 (2003). https://hal.inria.fr/inria-00570628
  40. 40.
    Dong, N.A.N., Du-yan, B.I., Yue-lei, X.U.: Retinex color image enhancement based on adaptive bidimensional empirical mode decomposition. J. Comput. Appl. 31(6), 1552–1559 (2011)Google Scholar
  41. 41.
    Kim, D., Park, M., Oh, H.S.: Bidimensional statistical empirical mode de- composition. IEEE Signal Process. Lett. 19(4), 191–194 (2012).  https://doi.org/10.1109/LSP.2012.2186566 ADSCrossRefGoogle Scholar
  42. 42.
    Smith, J.S.: The local mean decomposition and its application to EEG perception data. J. R. Soc. Interface. 2(5), 443–454 (2005).  https://doi.org/10.1098/rsif.2005.0058 MathSciNetCrossRefGoogle Scholar
  43. 43.
    Cheng, J., Yang, Y., Yang, Y.: A rotating machinery fault diagnosis method based on local mean decomposition. Dig. Signal Process. 22(2), 356–366 (2012).  https://doi.org/10.1016/j.dsp.2011.09.008 MathSciNetCrossRefGoogle Scholar
  44. 44.
    Liu, W.Y., Zhang, W.H., Han, J.G.: A new wind turbine fault diagnosis method based on the local mean decomposition. Renew. Energy. 48, 411–415 (2012).  https://doi.org/10.1016/j.renene.2012.05.018 CrossRefGoogle Scholar
  45. 45.
    Liu, H., Han, M.: A fault diagnosis method based on local mean decomposition and multi-scale entropy for roller bearings. Mech. Mach. Theory. 75, 67–78 (2014).  https://doi.org/10.1016/j.mechmachtheory.2014.01.011 CrossRefGoogle Scholar
  46. 46.
    Feng, Z., Zuo, M.J., Qu, J.: Joint amplitude and frequency demodulation analysis based on local mean decomposition for fault diagnosis of planetary gearboxes. Mech. Syst. Signal Process. 40(1), 56–75 (2013).  https://doi.org/10.1016/j.ymssp.2013.05.016 ADSCrossRefGoogle Scholar
  47. 47.
    Park, C., Looney, D., Van Hulle, M.M.: The complex local mean decomposition. Neurocomputing. 74(6), 867–875 (2011).  https://doi.org/10.1016/j.neucom.2010.07.030 CrossRefGoogle Scholar
  48. 48.
    Yuan, B., Chen, Z., Xu, S.: Micro-Doppler analysis and separation based on complex local mean decomposition for aircraft with fast-rotating parts in ISAR imaging. IEEE Trans. Geosci. Remote Sens. 52(2), 1285–1298(2014)  https://doi.org/10.1109/TGRS.2013.2249588 ADSCrossRefGoogle Scholar
  49. 49.
    Falconer, K.: Fractal geometry: mathematical foundations and applications. Wiley, New Jersey (2004)zbMATHGoogle Scholar
  50. 50.
    Fractals: Theory and Applications in Engineering: Theory and Applications in Engineering. Springer Science & Business Media, Berlin (2012)Google Scholar
  51. 51.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer Science & Business Media, Berlin (2013)zbMATHGoogle Scholar
  52. 52.
    Clerc, M.: Particle Swarm Optimization. Wiley, New Jersey (2010)zbMATHGoogle Scholar
  53. 53.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview press, Colorado (2014)zbMATHGoogle Scholar
  54. 54.
    Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer Science & Business Media, Berlin (2013)zbMATHGoogle Scholar
  55. 55.
    Rato, R., Ortigueira, M., Batista, A.: On the HHT, its problems, and some solutions. Mech. Syst. Signal Process. 22, 1374–1394 (2008).  https://doi.org/10.1016/j.ymssp.2007.11.028 ADSCrossRefGoogle Scholar
  56. 56.
    David, G., Lowe: Object recognition from local scale-invariant features. In: ICCV 1999, pp. 1150–1157 (1999).  https://doi.org/10.1109/ICCV.1999.790410
  57. 57.
    David, G., Lowe: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision. 60(2), 91–110 (2004).  https://doi.org/10.1023/B:VISI.0000029664.99615.94 CrossRefGoogle Scholar
  58. 58.
    Grefenstette, J.J.: Genetic algorithms and their applications. In: Proceedings of the Second International Conference on Genetic Algorithms. Psychology Press, London (2013)CrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2018

Authors and Affiliations

  1. 1.School of Physics and Electronic Electrical EngineeringHuaiyin Normal UniversityHuaianChina
  2. 2.School of Information and ElectronicsBeijing Institute of TechnologyBeijingChina

Personalised recommendations