Research on the properties and LD-pumped CW laser emission at 2.7 µm in Er3+:KLu(WO4)2 and Er3+/Pr3+:KLu(WO4)2 crystals

  • Yi YuEmail author
  • Xiurong Zhu
  • Xianke Zhang
  • Jvjun Yuan
  • Huajun Yu
  • Wen Zhang
  • Xiaoge Li
  • Yu Dong
  • Jiegang Duan
  • Guofu Wang
  • Shan Xu
Regular Paper


Two laser crystals of Er3+:KLu(WO4)2 and Er3+/Pr3+:KLu(WO4)2 were successfully grown using the top-seeded solution growth technique with K2W2O7 as flux. Segregation coefficients of Er3+ ions in Er3+:KLu(WO4)2 and Er3+/Pr3+:KLu(WO4)2 crystals were 0.664 and 0.9, respectively. The density of the Pr3+ ions in the Er3+/Pr3+:KLu(WO4)2 crystal was 1.19 × 1019 cm−3, and the segregation coefficient was 0.18. The absorption and fluorescence spectra of the two crystals with Y-oriented polarization (parallel to the b axis) light were recorded. Judd–Ofelt (J–O) theory was adapted to analyze the main parameters and they were crucial for evaluating the potential of laser crystals with output wavelength of 2.7 µm. Results showed that the Er3+/Pr3+:KLu(WO4)2 crystal had good J–O intensity parameter Ωt (t = 2, 4, 6) and relatively large emission cross section at 2.7 µm. The lifetimes of the 4I11/2 state in the Er3+:KLu(WO4)2 and Er3+/Pr3+:KLu(WO4)2 crystals were fitted to be 87.13 ms and 79.36 ms, respectively. The lifetime of 4I13/2 state decreased sharply from 5.59 s in Er3+:KLu(WO4)2 to 53.19 ms with co-doping of Er3+ ions and Pr3+ ions. Laser oscillation was accomplished at 2.7 µm wavelength using a b-cut Er3+/Pr3+:KLu(WO4)2 crystal sample with size of 4 × 4 × 10 mm3. Finally, a continuous-wave (CW) laser was realized with the highest slope of 15.94%. The center wavelength of the laser output was 2740 nm, and its FWHM was approximately 1.8 nm. Therefore, the Er3+/Pr3+:KLu(WO4)2 crystal has remarkable potential for generating 2.7 µm lasers.



This research was financially supported by the National Natural Science Foundation of China (No. 61765002, 11647107, 51762003, 11604026, and 11547229) and the Natural Science Foundation of Jiangxi, China (No. 20171BAB202038). All the authors are exceedingly grateful.


  1. 1.
    Sokólska, I., Heumann, E., Kück, S., Lukasiewicz, T.: Laser oscillation of Er3+:YVO4 and Er3+, Yb3+:YVO4 crystals in the spectral range around 1.6 µm. Appl. Phys. B 71, 893–896 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Wei, Z., Lin, L., Zhang, G., Wang: Growth and spectroscopic characterization of Er3+: Ca3La2(BO3)4 crystal. J. Phys. D Appl. Phys. 40, 2792–2796 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Huang, Y.S., Yuan, F.F., Sun, S.J., Lin, Z.B., Zhang, L.Z.: Thermal, spectral and laser properties of Er3+,Yb3+:GdMgB5O10: a new crystal for 1.5 µm lasers. Materials 11, 25–33 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    Konz, F., Frenz, M., Romano, V., Forrer, M., Weber, H.P., Kharkovskiy, A.V., Khomenko, S.I.: Active and passive Q-switching of a 2.79 µm Er: Cr: YSGG laser. Opt. Commun. 103, 398–404 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    Tempus, M., Luthy, W., Weber, H.P., Ostroumov, V.G., Shcherbakov, I.A.: 2.79 /spl mu/m YSGG:Cr:Er laser pumped at 790 nm. IEEE J. Quantum Electron. 30, 2608–2611 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    Högele, G., Hörbe, H., Lubatschowski, H., Welling H, Ertmer, W.: 2.70 µm CrEr: YSGG laser with high output energy and FTIR-Q-switch. Opt. Commun. 125, 90–94 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    Chrlton, A., Dickinson M.R., King, T.A.: High repetition rate, high average power Er:YAG laser at 2.94 µm. J. Mod. Opt. 36, 1393–1400 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    Wang, Y., You, Z.Y., Li, J.F., Zhu, Z.J., Ma, E., Tu, C.Y.: Spectroscopic investigations of highly doped Er3+:GGGG and Er3+/Pr3+: GGGG crystals. J. Phys. D Appl. Phys. 42, 215406 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Wang, Y., Li, J.F., Zhu, Z.J., You, Z.Y., Xu, J.L., Tu, C.Y.: Impact of codopant ions on 2.5-3.0 µm emission of Er3+:4I11/24I13/2 transition in Yb,Er,Eu:LaYSGG crystal. J. Quant. Spectrosc. Radiat. 167, 76–81 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Lv, S.Z., Zhu, Z.J., Wang, Y., You, Z.Y., Li, J.F., Feng, J.H., Tu, C.Y.: Spectroscopic investigations of Pr3+/Er3+:CaYAlO4 crystal for 2.7 µm emission. Opt. Mater. 35, 1623–1626 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Liu, Y.Y., Xia, H.P., Wang, Y., Zhu, Z.J., You, Z.Y., Li, J.F., Tu, C.Y.: Effect of erbium concentration on spectroscopic properties of Er:CaLaGa3O7 crystals with 2.7 µm emission. Opt. Mater. 72, 685–690 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Ma, W.W., Su, L.B., Xu, X.D., Wang, J.Y., Jiang, D.P., Zheng, L.H., Liu, J.J., Fan, X.W., Liu, J., Xu, J.: Improved 2.79 µm continuous-wave laser performance from a diode-end pumped Er,Pr:CaF2 crystal. J. Alloy. Compd. 695, 3370–3375 (2017)CrossRefGoogle Scholar
  13. 13.
    Huang, X.Y., Fang, Q., Yu, Q.M., Lü, X.D., Zhang, L.Z., Lin, Z.B., Wang, G.F.: Thermal and polarized spectroscopic characteristics of Nd3+:LiLa(WO4)2 crystal. J. Alloy. Compd. 468, 321–326 (2009)CrossRefGoogle Scholar
  14. 14.
    Liu, J.H., Cano-Torres, J.M., Esteban-Betegón, F., Serrano, M.D., Cascales, C., Zaldo, C., Rico, M., Griebner, U., Petrov, V.: Continuous-wave diode-pumped operation of an Yb:NaLa(WO4)2laser at room temperature. Opt. Laser Technol. 39, 558–561 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Han, X.M., García-Cortés, A., Serrano, M.D., Zaldo, C., Cascales, C.: Structural and thermal properties of tetragonal double tungstate crystals intended for ytterbium laser composites. Chem. Mater. 19, 3002–3010 (2007)CrossRefGoogle Scholar
  16. 16.
    Mironov, V.S., Li, L.E., Alloy Compd, J.: Crystal field analysis of Pr3+ and Nd3+ ions in KR(WO4)2 (R = Y or Gd) potassium rare-earth tungstates, J. Alloy. Compd. 1998. 279, 83–92CrossRefGoogle Scholar
  17. 17.
    Gao, X.L., Wang, Y.H., Wang, D., Liu, B.T.: Luminescent properties of KGd1–x(WO4)2:Eux 3+ and KGd1–x(WO4)2–y(MoO4)y:Eux 3+ phosphors in UV–VUV regions. J Lumin 129, 840–843 (2009)CrossRefGoogle Scholar
  18. 18.
    Huang, X.Y., Zhao, W., Wang, G.F., Li, X.X. adn Yu, Q.M.: Polarized spectral analysis of Er3+ ions in Er3+:LiGd(MoO4)2 crystal. J. Alloy. Compd. 509, 6578–6584 (2011)CrossRefGoogle Scholar
  19. 19.
    Li, M., Lin, H., Xu, D.K., Yang, S.H., Zhang, Y.L.: Hydrothermal synthesis, growth mechanism and down-shifting/upconversion photoluminescence of single crystal NaGd(MoO4)2 nanocubes doped with Eu3+, Tb3+ and Yb3+/Er3+. J. Cryst. Growth 468, 149–153 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Tang, L.Y., Lin, Z.B., Hu, Z.S., Wang, G.F.: Growth and spectral properties of Nd3+:KLu(WO4)2 crystal. J. Cryst. Growth 277, 228–232 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    Petrov, S., Rivier, U., Griebner, J., Liu, X., Mateos, A., Aznar, R., Sole, M., Aguilo, Diaz, F.: Epitaxially grown Yb:KLu(WO4)2 composites for continuous-wave and mode-locked lasers in the 1 µm spectral range. J. Non-Cryst. Solides 352, 2367–2370 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Koubaa, T., Dammak, M., Pujol, M.C., Aguiló, M., Díaz, F.: Optical spectroscopy of Eu3+ ions doped in KLu(WO4)2 single crystals. J. Lumin. 168, 7–13 (2015)CrossRefGoogle Scholar
  23. 23.
    Wang, K.P., Zhang, J.X., Wang, J.Y., Yu, W.T., Zhang, J.H., Wang, Z.P., Shao, Z.S.: Spectral and luminescent properties of trivalent samarium ions in KLu(WO4)2 crystals. Mater. Res. Bull. 41, 1695–1700 (2006)CrossRefGoogle Scholar
  24. 24.
    Zhao, H.Y., Wang, J.Y., Li, J., Zhang, H.J., Zhang, J.X., ling, Z.C., Xia, H.R., Boughton, R.I.: Optical and thermal properties of crystalline Tb: KLu(WO4)2. Mater. Lett. 61, 2499–2501 (2007)CrossRefGoogle Scholar
  25. 25.
    Liu, J.H., Han, W.J., Zhang, H.J., Wang, J.Y., Petrov, V.: Influence of pump wavelength on the laser performance of Yb:KLu(WO4)2 crystal. Opt. Commun. 281, 5393–5395 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Silvestre, O., Pujol, M.C., Solé, R., Bolaños, W., Carvajal, J.J., Massons, J., Aguiló, M., Diaz, F.: Ln3+:KLu(WO4)2/KLu(WO4)2 epitaxial layers: crystal growth and physical characterisation. Mater. Sci. Eng. B 146, 59–65 (2008)CrossRefGoogle Scholar
  27. 27.
    Jambunathan, V., Mateos, X., Pujol, M.C., Carvajal, J.J., Massons, J., Aguiló, M., Díaz, F.: Near-infrared photoluminescence from Ho3+-doped monoclinic KLu(WO4)2 crystal codoped with Tm3+. J. Lumin. 129, 1882–1885 (2009)CrossRefGoogle Scholar
  28. 28.
    Cong, Z.H., Liu, Z.J., Qin, Z.G., Zhang, X.Y., Wang, W.T.: LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm. Opt. Laser Technol. 73, 50–53 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Pujol, M.C., Mateos, X., Carvajal, J.J., Solé, R., Massons, J., Aguiló, M., Diaz, F.: Yb3+-doped KLu(WO4)2, Nb:RbTiOPO4 and KGd(PO3)4 crystals. Growth, characterization and laser operation. Opt. Mater. 63, 59–68 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    Pujol, M.C., Mateos, X., Aznar, A., Solans, X., Surinach, S., Massons, J., Diza, F., Aguilo, M.: Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2. J. Appl. Cryst. 39, 230–236 (2006)CrossRefGoogle Scholar
  31. 31.
    Shi, W.Q., Bass, M., Birnbaum, M.: Effects of energy transfer among Er3+ ions on the fluorescence decay and lasing properties of heavily doped Er:Y3Al5O12. J. Opt. Soc. Am. B 7, 1456–1460 (1990)ADSCrossRefGoogle Scholar
  32. 32.
    Yu, Y., Zhu, X.R., Zhang, X.K., Yuan, J.J., Yu, H.J., Kuang, F.K., Xiong, Z.Z., Liao, J.F., Zhang, W.: Growth and optical properties of Pr3+: KLu(WO4)2 laser crystal—a candidate for red emission laser. Opt. Rev. 23, 391–400 (2016)CrossRefGoogle Scholar
  33. 33.
    Zhao, H.Y., Wang, J.Y., Zhang, H.J., Li, J., Xu, G.G., Yu, L.L., Gao, W.L., Xia, H.R., Boughton, R.I.: Lattice vibration and optical properties of crystalline Nd:KLu(WO4)2. Chem. Phys. Lett. 450, 274–280 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    Judd, B.R.: Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750–761 (1962)ADSCrossRefGoogle Scholar
  35. 35.
    Ofelt, G.: Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511–520 (1962)ADSCrossRefGoogle Scholar
  36. 36.
    Guo, W.J., Lin, Y.F., Gong, X.H., Chen, Y.J., Luo, Z.D., Huang, Y.D.: Spectroscopic properties of Pr3+:KY(MoO4)2 crystal as a visible laser gain medium. J. Phys. Chem. Solids 69, 8–15 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    Cheng, Y., Zhang, H.J., Zhang, K., Xin, Z., Yang, X.B., Xu, X.D., Gao, W.L., Li, D.Z., Zhao, C.C., Xu, J.: Growth and spectroscopic characteristics of Er3+:YbVO4 crystal. J. Cryst. Growth 311, 3963–3968 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    Simondi-Teisseire, B., Viana, A.M., Lejus, D., Vivien, C., Borel, R., Templier, Wyon, C.: Spectroscopic properties and laser oscillation of Yb:Er:Ca2Al2SiO7 in the 1.55 µm eye-safe range. Adv. Solid-State Lasers 1, 301–306 (1996)Google Scholar
  39. 39.
    Wang, Y., Zhang, B.T., Li, J.F., Zhu, Z.J., You, Z.Y., Tu, C.Y.: Enhanced ~ 2.7 µm emission investigation of Er3+:4I11/24I13/2 transition in Yb,Er,Pr:SrLaGa3O7 crystal. J. Lumin. 183, 201–205 (2017)CrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2018

Authors and Affiliations

  • Yi Yu
    • 1
    • 2
    Email author
  • Xiurong Zhu
    • 1
    • 2
  • Xianke Zhang
    • 1
    • 2
  • Jvjun Yuan
    • 1
    • 2
  • Huajun Yu
    • 1
    • 2
  • Wen Zhang
    • 1
  • Xiaoge Li
    • 1
  • Yu Dong
    • 1
  • Jiegang Duan
    • 1
  • Guofu Wang
    • 3
  • Shan Xu
    • 4
  1. 1.College of Physics and ElectronicsGannan Normal UniversityGanzhouChina
  2. 2.Institute of Optoelectronic Materials and TechnologyGannan Normal UniversityGanzhouChina
  3. 3.Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
  4. 4.School of Physics and Optoelectronic EngineeringYangtze UniversityJingzhouChina

Personalised recommendations