Optical Review

, Volume 25, Issue 4, pp 500–508 | Cite as

Aberration improvement of the floating 3D display system based on Tessar array and directional diffuser screen

  • Xin GaoEmail author
  • Xinzhu SangEmail author
  • Xunbo Yu
  • Wanlu Zhang
  • Binbin Yan
  • Chongxiu Yu
Regular Paper


The floating 3D display system based on Tessar array and directional diffuser screen is proposed. The directional diffuser screen can smoothen the gap of lens array and make the 3D image’s brightness continuous. The optical structure and aberration characteristics of the floating three-dimensional (3D) display system are analyzed. The simulation and experiment are carried out, which show that the 3D image quality becomes more and more deteriorative with the further distance of the image plane and the increasing viewing angle. To suppress the aberrations, the Tessar array is proposed according to the aberration characteristics of the floating 3D display system. A 3840 × 2160 liquid crystal display panel (LCD) with the size of 23.6 inches, a directional diffuser screen and a Tessar array are used to display the final 3D images. The aberrations are reduced and the definition is improved compared with that of the display with a single-lens array. The display depth of more than 20 cm and the viewing angle of more than 45° can be achieved.


3D display Image processing Optical design 



Supported by BUPT Excellent Ph.D. Students Foundation (CX2016306); Natural National Science Foundation of China (NSFC) (61575025); Program 863 (2015AA015902); the fund of the State Key Laboratory of Information Photonics and Optical Communications.

Supplementary material

Supplementary material 1 (MP4 8989 KB)


  1. 1.
    Son, J., Javidi, B., Yano, S., Choi, K.: Recent developments in 3-D imaging technologies. J. Display Technol. 6(10), 394–403 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Hill, L., Jaccobs, A., “3-D liquid crystal displays and their applications,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition: (IEEE, 2006), pp. 575–590Google Scholar
  3. 3.
    Chang, Y.C., Tang, L.C., Yin, C.Y.: Efficient simulation of intensity profile of light subpixel-matched lenticular lens array for two- and four-view auto-stereoscopic liquid-crystal display. Appl. Opt 52(1), A356-A359 (2013)CrossRefGoogle Scholar
  4. 4.
    Takaki, Y., Nakamura, J.: Generation of 360-degree color three-dimensional images using a small array of high-speed projectors to provide multiple vertical viewpoints. Opt. Express 22(7), 8779–8789 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Son, J., Saveljev, V., Kim, J., Kwack, K., Kim, S.: Multiview Image acquisition and projection. J. Display Technol 2(4), 359–363 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Hong, J., Kim, Y., Park, S., Hong, J., Min, S., Lee, S., Lee, B.: 3D/2D convertible-type integral imaging using concave half mirror array. Opt. Express 18(20), 20628–20637 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Takaki, Y., Nago, N.: Multi-projection of lenticular displays to construct a 256-view super multi-view display. Opt. Express 18(9), 8824–8835 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Mphepo, W., Huang, Y., Rudquist, P., Shieh, H.: An autostereosocopic 3D display system based on prism patterned projection screen. J. Display Technol 6(3), 94–97 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Bogaert, L., Meuret, Y., Roelandt, S., Avci, A., Smet, H., Thienpont, H.: Demonstration of a multiview projection display using decentered microlens arrays. Opt. Express 18(25), 26092–26106 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Son, J., Javidi, B.: Three-dimensional imaging methods based on multiview images. J. Display Techol 1(1), 125–140 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Yi, S., Chae, H., Lee, S., “Moving parallax barrier design for eye-tracing autostereoscopic displays,” in Proceedings of IEEE Conference on 3DTV: (IEEE, 2008), pp. 165–168Google Scholar
  12. 12.
    Liou, J., Lee, K., Huang, J.: Low crosstalk multi-view tracking 3-D display of synchro-signal LED scanning backlight system. J. Display Technol 7(8), 411–419 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Sang, X., Fan, F., Jiang, C., Choi, S., Dou, W., Yu, C., Xu, D.: Demonstration of a large-size real-time full-color three-dimensional display. Opt. Lett. 34(24), 3803–3805 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Yu, C., Yuan, J., Fan, F., Jiang, C., Choi, S., Sang, X., Lin, C., Xu, D.: The modulation function and realizing method of holographic functional screen. Opt. Express 18(26), 27820–27826 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Sang, X., Fan, F., Choi, S., Yu, C., Yan, B., Dou, W.: Three-dimensional display based on the holographic functional screen. Opt. Eng. 50(9), 091303 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Lee, J., Park, J., Nam, D., Choi, S.Y., Park, D., Kim, C.Y.: Optimal projector configuration design for 300-Mpixel multi-projection 3D display. Opt. Express 21(22), 26820–26835 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Xia, X., Liu, X., Li, H., Zheng, Z., Wang, H., Peng, Y., Shen, W.: A 360-degree floating 3D display based on light field regeneration. Opt. Express 21(9), 11237–11247 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Lippmann, G.: La photographie integrale. Comptes-Rendus Acad. Sci. 146, 446–451 (1908)Google Scholar
  19. 19.
    Schwarz, J., Wang, A., Shemer, Z., Zalevsky, Javidi, B.: Lensless three-dimensional integral imaging using variable*** and time multiplexed pinhole array. Opt. Lett. 40(8), 1814–1817 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Wang, Q., Ji, C., Li, L., Deng, H.: Dual-view integral imaging 3D display by using orthogonal polarizer array and polarization switcher. Opt. Express 24(1), 9–16 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Jen, T., Shen, X., Yao, G., Huang, Y., Shieh, H.-P.D., Javidi, B.: Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens. Opt. Express 23(14), 18415–18421 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Zhang, J., Wang, X., Chen, Y., Yu, S., Zhang, Q., Li Z.: Improvement method of integral imaging quality based on an aperture-tunable lens array. Appl. Opt. 53(25), 5654–5659 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Luo, C., Wang, Q., Deng, H., Gong, X., Li, L., Wang, F.: Depth calculation method of integral imaging based on gaussian beam distribution model. J. Display Technol 8(2), 112–116 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Luo, C., Xiao, X., Deng, H., Corral, M., Chen, C., Javid, B., Wang, Q.: Analysis of the depth of field of integral imaging displays based on wave optics. Opt. Express 21(25), 31263–31273 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Yu, X., Sang, X., Gao, X., Chen, Z., Chen, D., Duan, W., Yan, B., Yu, C., Xu, D.: Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues. Opt. Express 23(20), 25950–25958 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Karimzadeh A.: Integral imaging system optical design with aberration consideration. Appl. Opt 54(7), 1765–1769 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Zhang, J., Wang, X., Wu, X., Yang, C., Chen Y.: Wide-view integral imaging using fiber-coupled monocentric lens array. Opt. Express 23(18), 23339–23347 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Fan, F., Choi, S., Jang, C.: Demonstration of full-parallax three-dimensional holographic display on commercial 4K flat-panel displayer. Chin. Opt. Lett. 14(1), 010007 (2016)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Information Photonics and Optical CommunicationsBeijing University of Posts and Telecommunications (BUPT)BeijingChina

Personalised recommendations