Optical Review

, Volume 25, Issue 3, pp 473–485 | Cite as

Phase-detected Brillouin optical correlation-domain reflectometry

  • Yosuke MizunoEmail author
  • Neisei Hayashi
  • Hideyuki Fukuda
  • Kentaro Nakamura
Special Section: Regular Paper Optics Awards 2017 (OA 2017)
Part of the following topical collections:
  1. Optics Awards 2017 (OA2017)


Optical fiber sensing techniques based on Brillouin scattering have been extensively studied for structural health monitoring owing to their capability of distributed strain and temperature measurement. Although a higher signal-to-noise ratio (leading to high spatial resolution and high-speed measurement) is generally obtained for two-end-access systems, they reduce the degree of freedom in embedding the sensors into structures, and render the measurement no longer feasible when extremely high loss or breakage occurs at a point of the sensing fiber. To overcome these drawbacks, a one-end-access sensing technique called Brillouin optical correlation-domain reflectometry (BOCDR) has been developed. BOCDR has a high spatial resolution and cost efficiency, but its conventional configuration suffered from relatively low-speed operation. In this paper, we review the recently developed high-speed configurations of BOCDR, including phase-detected BOCDR, with which we demonstrate real-time distributed measurement by tracking a propagating mechanical wave. We also demonstrate breakage detection with a wide strain dynamic range.


Brillouin scattering Distributed strain and temperature sensing High-speed measurement Nonlinear optics Optical fiber sensors 



The authors wish to acknowledge Tomohito Kawa, Heeyoung Lee, Shumpei Shimada, Makoto Shizuka, Kazunari Minakawa, Hiroki Tanaka, Sho Ikeda, Daisuke Yamane, Hiroyuki Ito, Shiro Dosho, and Kazuya Masu (Institute of Innovative Research, Tokyo Institute of Technology) for their experimental assistance. This work was supported by JSPS KAKENHI Grant Numbers 25709032, 26630180, 25007652, and 17H04930, and by research Grants from the Iwatani Naoji Foundation, the SCAT Foundation, the Konica Minolta Science and Technology Foundation, the Japan Gas Association, the ESPEC Foundation for Global Environment Research and Technology, the Association for Disaster Prevention Research, the Fujikura Foundation, and the Japan Association for Chemical Innovation.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Agrawal, G.P.: Nonlinear Fiber Optics. Academic, Cambridge (2001)zbMATHGoogle Scholar
  2. 2.
    Horiguchi, T., Tateda, M.: BOTDA—nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory. J. Lightwave Technol. 7, 1170–1176 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    Voskoboinik, A., et al.: SBS-based fiber optical sensing using frequency-domain simultaneous tone interrogation. J. Lightwave Technol. 29, 1729–1735 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Bernini, R., Minardo, A., Zeni, L.: Dynamic strain measurement in optical fibers by stimulated Brillouin scattering. Opt. Lett. 34, 2613–2615 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Peled, Y., Motil, A., Yaron, L., Tur, M.: Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile. Opt. Express 19, 19845–19854 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Peled, Y., Motil, A., Tur, M.: Fast Brillouin optical time domain analysis for dynamic sensing. Opt. Express 20, 8584–8591 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Taki, M., et al.: Cyclic pulse coding for fast BOTDA fiber sensors. Opt. Lett. 38, 2877–2880 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Danon, O., Motil, A., Sovran, I., Hadar, R., Tur, M.: Real-time fast and distributed measurement of a Brillouin-inhomogeneous fiber using tailored-frequency probe in slope-assisted BOTDA. Proc. SPIE 9157, 9157AM (2014)Google Scholar
  9. 9.
    Muanenda, Y., Taki, M., Pasquale, F.D.: Long-range accelerated BOTDA sensor using adaptive linear prediction and cyclic coding. Opt. Lett. 39, 5411–5414 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Sovran, I., Motil, A., Tur, M.: Frequency-scanning BOTDA with ultimately fast acquisition speed. IEEE Photon. Technol. Lett. 27, 1426–1429 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Dong, Y., et al.: High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation. IEEE Photon. J. 5, 2600407 (2013)CrossRefGoogle Scholar
  12. 12.
    Elooz, D., Antman, Y., Levanon, N., Zadok, A.: High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis. Opt. Express 22, 6453–6463 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Garus, D., Krebber, K., Schliep, F., Gogolla, T.: Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis. Opt. Lett. 21, 1402–1404 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    Bernini, R., Minardo, A., Zeni, L.: Distributed sensing at centimeter-scale spatial resolution by BOFDA: measurements and signal processing. IEEE Photon. J. 4, 48–56 (2012)CrossRefGoogle Scholar
  15. 15.
    Minardo, A., Bernini, R., Zeni, L.: Distributed temperature sensing in polymer optical fiber by BOFDA. IEEE Photon. Technol. Lett. 26, 387–390 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Wosniok, A., Mizuno, Y., Krebber, K., Nakamura, K.: L-BOFDA: a new sensor technique for distributed Brillouin sensing. Proc. SPIE 8794, 879431 (2013)Google Scholar
  17. 17.
    Hotate, K., Hasegawa, T.: Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation. IEICE Trans. Electron. E83-C, 405–412 (2000)Google Scholar
  18. 18.
    Song, K.Y., He, Z., Hotate, K.: Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis. Opt. Lett. 31, 2526–2528 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Song, K.Y., Hotate, K.: Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis. IEEE Photon. Technol. Lett. 19, 1928–1930 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Song, K.Y., Kishi, M., He, Z., Hotate, K.: High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation. Opt. Lett. 36, 2062–2064 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Song, K.Y., Hotate, K.: Brillouin optical correlation domain analysis in linear configuration. IEEE Photon. Technol. Lett. 20, 2150–2152 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Jeong, J.H., et al.: Linearly configured BOCDA system using a differential measurement scheme. Opt. Express 22, 1467–1473 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Song, K.Y., He, Z., Hotate, K.: Optimization of Brillouin optical correlation domain analysis system based on intensity modulation scheme. Opt. Express 14, 4256–4263 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Zhang, C., Kishi, M., Hotate, K.: 5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis. Appl. Phys. Express 8, 042501 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Kurashima, T., Horiguchi, T., Izumita, H., Furukawa, S., Koyamada, Y.: Brillouin optical-fiber time domain reflectometry. IEICE Trans. Commun. E76-B, 382–390 (1993)Google Scholar
  26. 26.
    Alahbabi, M.N., Cho, Y.T., Newson, T.P.: 100 km distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter. Meas. Sci. Technol. 15, 1544–1547 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Geng, J., Staines, S., Blake, M., Jiang, S.: Distributed fiber temperature and strain sensor using coherent radio-frequency detection of spontaneous Brillouin scattering. Appl. Opt. 46, 5928–5932 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Masoudi, A., Belal, M., Newson, T.P.: Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering. Opt. Lett. 38, 3312–3315 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Tu, G., Zhang, X., Zhang, Y., Ying, Z., Lu, L.: Strain variation measurement with short-time Fourier transform-based Brillouin optical time-domain reflectometry sensing system. Electron. Lett. 50, 1624–1626 (2014)CrossRefGoogle Scholar
  30. 30.
    Minardo, A., Bernini, R., Ruiz-Lombera, R., Mirapeix, J., Lopez-Higuera, L.M., Zeni, L.: Proposal of Brillouin optical frequency-domain reflectometry (BOFDR). Opt. Express 24, 29994–30001 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Mizuno, Y., Zou, W., He, Z., Hotate, K.: Proposal of Brillouin optical correlation-domain reflectometry (BOCDR). Opt. Express 16, 12148–12153 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Mizuno, Y., Zou, W., He, Z., Hotate, K.: Operation of Brillouin optical correlation-domain reflectometry: theoretical analysis and experimental validation. J. Lightwave Technol. 28, 3300–3306 (2010)ADSGoogle Scholar
  33. 33.
    Mizuno, Y., He, Z., Hotate, K.: One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry. IEEE Photon. Technol. Lett. 21, 474–476 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Mizuno, Y., He, Z., Hotate, K.: Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme. Opt. Express 17, 9040–9046 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    Mizuno, Y., He, Z., Hotate, K.: Stable entire-length measurement of fiber strain distribution by Brillouin optical correlation-domain reflectometry with polarization scrambling and noise-floor compensation. Appl. Phys. Express 2, 062403 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Manotham, S., Kishi, M., He, Z., Hotate, K.: 1-cm spatial resolution with large dynamic range in strain distributed sensing by Brillouin optical correlation domain reflectometry based on intensity modulation. Proc. SPIE 8351, 835136 (2012)Google Scholar
  37. 37.
    Koizumi, K., Kanda, Y., Fujii, A., Murai, H.: High-speed distributed strain measurement using Brillouin optical time-domain reflectometry based-on self-delayed heterodyne detection. Proc. ECOC (2015).
  38. 38.
    Mizuno, Y., Hayashi, N., Fukuda, H., Nakamura, K.: Single-end-access distributed strain sensing with wide dynamic range using higher-speed Brillouin optical correlation-domain reflectometry. Jpn. J. Appl. Phys. 56, 072501 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    Mizuno, Y., Hayashi, N., Fukuda, H., Song, K.Y., Nakamura, K.: Ultrahigh-speed distributed Brillouin reflectometry. Light: Sci. Appl. 5, e16184 (2016)CrossRefGoogle Scholar
  40. 40.
    Hotate, K., He, Z.: Synthesis of optical-coherence function and its applications in distributed and multiplexed optical sensing. J. Lightwave Technol. 24, 2541–2557 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    Horiguchi, T., Kurashima, T., Tateda, M.: Tensile strain dependence of Brillouin frequency shift in silica optical fibers. IEEE Photon. Technol. Lett. 1, 107–108 (1989)ADSCrossRefGoogle Scholar
  42. 42.
    Peled, Y., Motil, A., Kressel, I., Tur, M.: Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA. Opt. Express 21, 10697–10705 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    Lee, H., Hayashi, N., Mizuno, Y., Nakamura, K.: Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept. IEEE Photon. J. 8, 6802807 (2016)Google Scholar
  44. 44.
    Lee, H., Hayashi, N., Mizuno, Y., Nakamura, K.: Operation of slope-assisted Brillouin optical correlation-domain reflectometry: comparison of system output with actual frequency shift distribution. Opt. Express 24, 29190–29197 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    Lee, H., Hayashi, N., Mizuno, Y., Nakamura, K.: Slope-assisted Brillouin optical correlation-domain reflectometry using polymer optical fibers with high propagation loss. J. Lightwave Technol. 35, 2306–2310 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    Lee, H., Mizuno, Y., Nakamura, K.: Measurement sensitivity dependencies on incident power and spatial resolution in slope-assisted Brillouin optical correlation-domain reflectometry. Sensors Actuators A Phys. 268, 68–71 (2017)CrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2018

Authors and Affiliations

  1. 1.Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
  2. 2.Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
  3. 3.Servo LaboratoryFANUC CorporationYamanashiJapan

Personalised recommendations