Optical Review

, Volume 25, Issue 3, pp 365–374 | Cite as

Numerical and experimental investigations of dependence of photoacoustic signals from gold nanoparticles on the optical properties

  • Shinpei Okawa
  • Takeshi Hirasawa
  • Ryota Sato
  • Toshihiro Kushibiki
  • Miya Ishihara
  • Toshiharu Teranishi
Regular Paper


Gold nanoparticles (AuNPs) are used as a contrast agent of the photoacoustic (PA) imaging. The efficiency of AuNPs has been discussed with the absorption cross section. However, the effects of the scattering of the light by AuNPs and surrounding medium on the PA signal from AuNPs have not been discussed. The PA signals from the aqueous solution of AuNPs were examined in the numerical simulation and the experiment. In the numerical simulation, the absorption and scattering cross sections of spherical and polyhedral AuNPs were calculated by Mie theory and discrete dipole approximation. Monte Carlo simulation calculated the absorbed light energy in the aqueous solution of AuNPs. Based on the PA wave equation, the PA signals were simulated. In the experiment, the PA signal from the aqueous solution of AuNP was measured by use of a piezoelectric film and a Q-switched Nd:YAG laser operated at 532 nm. The results of the numerical simulation and the experiment agreed well. In the numerical simulation and the experiment, a single Au nanocube with 50-nm edge generated the peak value of the PA signal significantly. It was approximately 350 times and twice as large as the peak values of the spherical AuNPs with 10- and 50-nm diameters, respectively. The peak value of the PA signal depended on both the absorption and scattering coefficients of the AuNPs and the surrounding medium. The peak value increased with the scattering coefficient in a quadratic manner. The character of the temporal profile of the PA signal such as full width at half maximum depended on the scattering coefficient of the AuNPs.


Gold nanoparticle Optical property Monte Carlo method Discrete dipole approximation Photoacoustic 



This work was partly supported by AMED Collaborative Research Based on Industrial Demand (In vivo Molecular Imaging: Toward Biophotonics Innovations in Medicine), JSPS KAKENHI (Grant Number 15K06125), and the Collaborative Research Program of Institute for Chemical Research, Kyoto University (Grants #2015-42, 2016-44 and 2017-44).


  1. 1.
    Oraevsky, A.A.: Gold and silver nanoparticles as contrast agents for optoacoustic tomography. In: Wang, L.V. (ed.) Photoacoustic imaging and spectroscopy, pp. 373–386. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  2. 2.
    Wang, Y., Black, K.C.L., Luehman, H., Li, W., Zang, Y., Cai, X., Wan, D., Liu, S.-Y., Li, M., Kim, P., Li, Z.-Y., Wang, L.-V., Liu, Y., Xia, Y.: Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 7, 2068–2077 (2013)CrossRefGoogle Scholar
  3. 3.
    von Maltzahn, G., Park, J.-H., Agrawal, A., Bandaru, N.K., Das, S.K., Sailor, M.J., Bhatia, S.N.: Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 69, 3892–3900 (2009)CrossRefGoogle Scholar
  4. 4.
    Huang, X., Jain, P.K., El-Sayed, I.H., El-Sayed, M.A.: Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23, 217–228 (2008)CrossRefGoogle Scholar
  5. 5.
    Jabeen, F., Najam-ul-Haq, M., Javeed, R., Huck, C.W., Bonn, G.K.: Au-nanomaterials as a superior choice for near-infrared photothermal therapy. Molecules 19, 20580–20593 (2014)CrossRefGoogle Scholar
  6. 6.
    Mallidi, S., Larson, T., Tam, J., Joshi, P.P., Karpiouk, A., Sokolov, K., Emelianov, S.: Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett. 9, 2825–2831 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Li, W., Brown, P.K., Wang, L.V., Xia, Y.: Gold nanocages as contrast agents for photoacoustic imaging. Contrast Media Mol. Imaging 6, 370–377 (2011)CrossRefGoogle Scholar
  8. 8.
    Yang, X., Stein, E.W., Ashkenazi, A., Wang, L.V.: Nanoparticles for photoacoustic imaging. WIREs Nanomed. Nanobiotechnol. 1, 360–368 (2009)CrossRefGoogle Scholar
  9. 9.
    Kim, C., Cho, E.C., Chen, J., Song, K.H., Au, L., Favazza, C., Zhang, Q., Cobley, C.M., Gao, F., Xia, Y., Wang, L.V., : In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano 4, 4559–4564 (2010)CrossRefGoogle Scholar
  10. 10.
    Ju, H., Roy, R.A., Murray, T.W.: Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy. Biomed. Opt. Express 4, 66–76 (2013)CrossRefGoogle Scholar
  11. 11.
    Wei, C.-W., Lombardo, M., Larson-Smith, K., Pelivanov, I., Perez, C., Xia, J., Matula, T., Pozzo, D., O’Donnell, M.: Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions. Appl. Phys. Lett. 104, 033701 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Wang, Y.W., Xie, X.Y., Wang, X.D., Ku, G., Gill, K.L., O’Neal, D.P., Stoica, G., Wang, L.V.: Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 4, 1689–1692 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Arnal, B., Perez, C., Wei, C.-W., Xia, J., Lombardo, M., Pelivanov, I., Matula, T.J., O’Donnell, M.: Sono-photoacoustic imaging of gold nanoemulsions: Part I. Exposure Thresholds. Photoacoust. 3, 3–10 (2015)Google Scholar
  14. 14.
    Mallidi, S., Kim, S., Karpiouk, A., Joshi, P.P., Sokolov, K., Emelianov, S.: Visualization of molecular composition and functionality of cancer cells using nanoparticle-augmented ultrasound-guided photoacoustics. Photoacoustics 3, 26–34 (2015)CrossRefGoogle Scholar
  15. 15.
    Oraevsky, A.A.: Contrast agents for optoacoustic imaging: design and biomedical applications. Photoacoustics 3, 1–2 (2015)CrossRefGoogle Scholar
  16. 16.
    Inagaki, T., Kagami, K., Arakawa, E.T.: Photoacoustic study of surface plasmons in metals. Appl. Opt. 21(5), 949–954 (1982)ADSCrossRefGoogle Scholar
  17. 17.
    Eguchi, M., Mitsui, D., Wu, H.-L., Sato, R., Teranishi, T.: Simple reductant concentration-dependent shape control of polyhedral gold nanoparticles and their plasmonic properties. Langmuir 28, 9021–9026 (2012)CrossRefGoogle Scholar
  18. 18.
    Feis, A., Gellini, C., Salvi, P.R., Becucci, M: Photoacoustic excitation profiles of gold nanoparticles. Photoacoustics 2, 47–53 (2014)Google Scholar
  19. 19.
    Yasa, Z.A., Jackson, W.B., Amer, N.M.: Photothermal spectroscopy of scattering media. Appl. Opt. 21(1), 21–31 (1982)ADSCrossRefGoogle Scholar
  20. 20.
    Jain, P.K., Lee, K.S., El-Sayed, I.H., El-Sayed, M.A.: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition? Applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006)CrossRefGoogle Scholar
  21. 21.
    Prahl, S.: Mie scattering calculator (Website of Oregon Medical Laser Center, 2012), Accessed 16 Feb 2017
  22. 22.
    Alsawafta, M., Wahben, M., Truong, V.-V.: Plasmonic Modes and Optical Properties of Gold and Silver Ellipsoidal Nanoparticles by the Discrete Dipole Approximation. J. Nanomater. 2012, 457968 (2012)Google Scholar
  23. 23.
    Drain, B.T., Flatau, P.J.: Discrete-dipole approximation for periodic targets: theory and tests. J. Opt. Soc. Am. A 25, 2693–2703 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Hao, F., Nordlander, P.: Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles. Chem. Phys. Lett. 446, 115–118 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Akouibaa, A., Benhamou, M., Derouiche, A.: Simulation of the optical properties of gold nanorods: comparison to experiment. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3, 657–671 (2013)Google Scholar
  26. 26.
    Jacques, S.L.: Coupling 3D Monte Carlo light transport in optically heterogeneous tissues to photoacoustic signal generation. Photoacoustics 2, 137–142 (2014)CrossRefGoogle Scholar
  27. 27.
    Okawa, S., Hirasawa, T., Sato, R., Kushibiki, T., Ishihara, M., Teranishi, T.: Effects of the optical properties of gold nanoparticles on photoacoustic signals. Proc. SPIE 9708, 970836 (2016)CrossRefGoogle Scholar
  28. 28.
    van Staveren, H.J., Moes, C.J.M., van Marie, J., Prahl, S.A., van Gemert, M.J.C.: Light scattering in lntralipid-10% in the wavelength range of 400?1100 nm. Appl. Opt. 30, 4507 (1991)ADSCrossRefGoogle Scholar
  29. 29.
    Yurkin, M.A., Hoekstra, A.G.: The discrete-dipole-approximation code ADDA: capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Arridge, S.R.: Optical tomography in medical imaging. Inverse Probl. 15, R41–R93 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Cox, B., Laufer, J.G., Arridge, S.R., Beard, P.C.: Quantitative spectroscopic photoacoustic imaging: a review. J. Biomed. Opt. 17, 061202 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Klose, A.D., Ntziachristos, V., Hielscher, A.H.: The inverse source problem based on the radiative transfer equation in optical molecular imaging. J. Compt. Phys. 202, 323–345 (2005)ADSCrossRefzbMATHGoogle Scholar
  33. 33.
    Fujii, H., Okawa, S., Yamada, Y., Hoshi, Y.: Hybrid model of light propagation in random media based on the time-dependent radiative transfer and diffusion equations. J. Quant. Spectrosc. Radiat. Transfer 147, 145–154 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Pulkkinen, A., Cox, B.T., Arridge, S.R., Kaipio, J.P., Tarvainen, T.: Quantitative photoacoustic tomography using illuminations from a single direction. J. Biomed. Opt. 20, 036015 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Wang, L.-H., Jacques, S.L., Zheng, L.Q.: MCML-Monte Carlo modeling of light transport in multi-layered tissues. Comput. Meth. Prog. Bio. 47, 131 (1995)CrossRefGoogle Scholar
  36. 36.
    Li, C., Wang, L.V.: Photoacoustic tomography and sensing in biomedicine. Phys. Med. Biol. 54, R59–R97 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Jacques, S.L.: Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37–R61 (2013)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2018

Authors and Affiliations

  • Shinpei Okawa
    • 1
  • Takeshi Hirasawa
    • 1
  • Ryota Sato
    • 2
  • Toshihiro Kushibiki
    • 1
  • Miya Ishihara
    • 1
  • Toshiharu Teranishi
    • 2
  1. 1.Department of Medical EngineeringNational Defense Medical CollegeTokorozawaJapan
  2. 2.Institute for Chemical ResearchKyoto UniversityKyotoJapan

Personalised recommendations