Advertisement

Optical Review

, Volume 25, Issue 3, pp 316–322 | Cite as

Flat and ultra-broadband two-pump fiber optical parametric amplifiers based on photonic crystal fibers

  • Nan Cao
  • Hongna Zhu
  • Peipei Li
  • Stefano Taccheo
  • Yuanna Zhu
  • Xiaorong Gao
  • Zeyong Wang
Regular Paper
  • 130 Downloads

Abstract

A two-pump fiber optical parametric amplifier (FOPA) based on the photonic crystal fiber (PCF) in the telecommunication region is investigated numerically. The fiber loss and pump depletion are considered. The influences of the fiber length, input signal power, input pump power, and the center pump wavelength on the gain bandwidth, flatness, and peak gain are discussed. The 6-wave model-based analysis of two-pump FOPA is also achieved and compared with that based on the 4-wave model; furthermore, the gain properties of the FOPA based on the 6-wave model are optimized and investigated. The comparison results show that the PCF-based two-pump FOPA achieves flatter and wider gain spectra with less fiber length and input pump power compared to the two-pump FOPA based on the normal highly nonlinear fiber, where the obtained results show the great potential of the FOPA for the optical communication system.

Keywords

Fiber optical parametric amplifiers Photonic crystal fiber 4-Wave model 6-Wave model Flat and broadband gain 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 61405167).

References

  1. 1.
    Gordienko, V., Stephens, M.F.C., El-Taher, A.E.: Ultra-flat wide band single-pump Raman-enhanced parametric amplification. Opt. Express 25, 4810–4818 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    Provino, L., Mussot, A., Lantz, E., Sylvestre, T., Maillotte, H.: Broadband and flat parametric amplifiers with a multisection dispersion-tailored nonlinear fiber arrangement. J. Opt. Soc. Am. B 20, 1532–1537 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Okada, H., Kiriyama, H., Mori, M.: Demonstration of highly efficient broadband amplification in a optical parametric chirped-pulse amplifier system. Opt. Rev. 16, 1–3 (2009)CrossRefGoogle Scholar
  4. 4.
    Steffensen, H., Ott, J.R., Rottwitt, K., McKinstrie, C.J.: Full and semi-analytic analyses of two-pump parametric amplification with pump depletion. Opt. Express 19, 6648–6656 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Zhao, J.P., Luo, B., Pan, W., Yan, L.S., Shao, L.Y., Zou, X.H., Ye, J., Zhu, H.N., Chen, Z.Y.: Characterization of a FM actively mode-locked fiber optical parametric oscillator. J. Opt. Soc. Am. B 33, 1382–1387 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Zhu, H.N., Luo, B., Pan, W., Yan, L.S., Zhao, J.P., Wang, Z.Y., Gao, X.R.: Gain improvement of fiber parametric amplifier via the introduction of standard single-mode fiber for phase matching. Chin. Phys. Lett. 30, 074206 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Islan, M.I., Khatun, M., Ahmed, K.: Ultra-high negative dispersion compensating square lattice based single mode photonic crystal fiber with high nonlinearity. Opt. Rev. 24, 147–156 (2017)CrossRefGoogle Scholar
  8. 8.
    Pakarzadeh, H., Rezaei, S.M.: Modeling of dispersion and nonlinear characteristics of tapered photonic crystal fibers for applications in nonlinear optics. J. Mod. Opt. 63, 151–158 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Nguyen, H.C., Kuhlmey, B.T., Magi, E.C., Steel, M.J., Domachuk, P., Smith, C.L., Eggleton, B.J.: Tapered photonic crystal fibres: properties, characterization and applications. Appl. Phys. 81, 377–387 (2005)CrossRefGoogle Scholar
  10. 10.
    Hsu, J.M., Wang, B.L.: Tailoring of broadband dispersion-compensating photonic crystal fiber. J. Mod. Opt. 64, 1134–1145 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Hasan, M.R., Islam, M.A., Rifat, A.A., Hasan, M.I.: A single-mode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding. J. Mod. Opt. 64, 218–225 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Wang, H.Y., Yan, X., Li, S.G.: Ultra-short polarization beam splitter based on dual core photonic crystal fiber. J. Mod. Opt. 64, 445–450 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Diouf, M., Cherif, R., Salem, A.B., Wague, A.: Ultra-broadband, coherent mid-IR supercontinuum expanding from 1.5 to 12.2 µm in new design of AsSe2 photonic crystal fibre. J. Mod. Opt. 64, 1335–1341 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Hossain, M.A., Namihira, Y., Razzak, S.M.A.: Supercontinuum generation at 1.55 μm using highly nonlinear photonic crystal fiber for telecommunication and medical applications. Opt. Rev. 19, 315–319 (2012)CrossRefGoogle Scholar
  15. 15.
    Zhu, H.N., Luo, B., Pan, W., Yan, L.S., Xiang, S.Y., Wen, K.H.: Gain enhancement of fiber optical parametric amplifier via introducing phase-shifted fiber Bragg grating for phase matching. J. Opt. Soc. Am. B 29, 1497–1502 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Gao, M., Jiang, C., Hu, W., Wang, J.: Optimized design of two-pump fiber optical parametric amplifier with two-section nonlinear fibers using genetic algorithm. Opt. Express 12, 5603–5613 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Liu, Y.L., Wang, Z.Y., Zhu, H.N., Gao, X.R.: Gain optimization of fiber optical parametric amplifier based on genetic algorithm with pump depletion. Appl. Opt. 52, 7445–7448 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Pakarzadeh, H., Taghizadeh, M., Hatami, M.: Designing a photonic crystal fiber for an ultra-broadband parametric amplification in telecommunication. J. Nonlinear Opt. Phys. Mater. 25, 1650023 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Marhic, M.E., Andrekson, P.A., Petropoulos, P., Radic, S., Peucheret, C., Jazayerifar, M.: Fiber optical parametric amplifiers in optical communication systems. Laser Photonics Rev. 9, 50–74 (2015)CrossRefGoogle Scholar
  20. 20.
    Marhic, M.E.: Fiber Optical Parametric Amplifiers Oscillators and Related Devices. Cambridge University Press, Cambridge (2008)Google Scholar
  21. 21.
    Li, Y., Qian, L., Lu, D., Fan, D.: Ultrafast four-wave mixing in single-pumped fiber optical parametric amplifiers. J. Opt. A Pure Appl. Opt. 8, 689–694 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Marhic, M.E., Rieznik, A.A., Fragnito, H.L.: Investigation of the gain spectrum near the pumps of two-pump fiber-optic parametric amplifiers. J. Opt. Soc. Am. B 25, 22–30 (2008)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Vedadi, A., Marhic, M.E., Lantz, E., Maillotte, H., Sylvestre, T.: Investigation of gain ripple in two-pump fiber optical parametric amplifiers. Opt. Lett. 33, 2203–2205 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Pakarzadeh, H., Zakery, A.: Investigation of two-pump fiber optical parametric amplifiers for a broadband and flat gain with a low pump-to-signal noise transfer. J. Nonlinear Opt. Phys. Mater. 24, 1550038 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Pakarzadeh, H., Zakery, A.: Numerical modeling of the pump-to-signal relative intensity noise transfer in two-pump fibre optical parametric amplifiers. Pramana 77, 655–667 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Nazemosadal, E., Lorences-Riesgo, A., Karisson, M.: Design of highly nonlinear few-mode fiber for C-Band optical parametric amplification. J. Lightwave Technol. 35, 2810–2817 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    Taghizadeh, M., Hatami, M., Pakarzadeh, H.: Pulsed optical parametric amplification based on photonic crystal fibres. J. Mod. Opt. 64, 357–365 (2017)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2018

Authors and Affiliations

  1. 1.School of Physical Science and TechnologySouthwest Jiaotong UniversityChengduChina
  2. 2.College of EngineeringSwansea UniversitySwanseaUK
  3. 3.Shandong Better Motor Co, LtdLongkouChina

Personalised recommendations