Optical Review

, Volume 25, Issue 2, pp 244–253 | Cite as

Algorithms for image recovery calculation in extended single-shot phase-shifting digital holography

Regular Paper
  • 109 Downloads

Abstract

The single-shot phase-shifting method of image recovery using an inclined reference wave has the advantages of reducing the effects of vibration, being capable of operating in real time, and affording low-cost sensing. In this method, relatively low reference angles compared with that in the conventional method using phase shift between three or four pixels has been required. We propose an extended single-shot phase-shifting technique which uses the multiple-step phase-shifting algorithm and the corresponding multiple pixels which are the same as that of the period of an interference fringe. We have verified the theory underlying this recovery method by means of Fourier spectral analysis and its effectiveness by evaluating the visibility of the image using a high-resolution pattern. Finally, we have demonstrated high-contrast image recovery experimentally using a resolution chart. This method can be used in a variety of applications such as color holographic interferometry.

Keywords

Digital holography Phase-shift Image recovery Fourier spectrum Single-shot 

References

  1. 1.
    Schnars, U., Jüptner, W.: Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33, 179 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    Cuche, E., Bevilacqua, F., Depeursinge, C.: Digital holography for quantitative phase-contrast imaging. Opt. Lett. 24, 291 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Kreis, T.: Handbook of Holographic Interferometry: Optical and Digital Methods. Wiley-VCH, Weinheim (2005)Google Scholar
  4. 4.
    Takeda, M., Ina, H., Kobayashi, S.: Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156 (1982)ADSCrossRefGoogle Scholar
  5. 5.
    Cuche, E., Marquet, P., Depeursinge, C.: Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl. Opt. 39, 4070 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Yamaguchi, I., Zhang, T.: Phase-shifting digital holography. Opt. Lett. 22, 1268 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    Malacara, D. (ed.): Optical Shop Testing, 3rd edn., p. 547. Wiley, Hoboken (2007)Google Scholar
  8. 8.
    Awatsuji, Y., Sasada, M., Kubota, T.: Parallel quasi-phase-shifting digital holography. Appl. Phys. Lett. 85, 1069 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Kakue, T., Yonesaka, R., Tahara, T., Awatsuji, Y., Nishio, K., Ura, S., Kubota, T., Matoba, O.: High-speed phase imaging by parallel phase-shifting digital holography. Opt. Lett. 36, 4131 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Nomura, T., Murata, S., Nitanai, E., Numata, T.: Phase-shifting digital holography with a phase difference between orthogonal polarizations. Appl. Opt. 45, 4873 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Toge, H., Fujiwara, H., Sato, K.: One-shot digital holography for recording color 3-D images. Proc. of SPIE. 6912, 69120U-1 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Harada, Y., Wan, A., Sasaki, Y.: Tolerance analysis in single-shot phase-shifting digital holography based on the spatial carrier interferometry. Proc. SPIE. 7619, 761908-1 (2010)Google Scholar
  13. 13.
    Debnath, S.K., Park, Y.: Real-time quantitative phase imaging with a spatial phase-shifting algorithm. Opt. Lett. 36, 4677 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Huang, L., Lu, X., Li, J., Zhou, Y., Xiong, J., Tian, J., Zhong, L.: Dynamic phase measurement based on spatial carrier-frequency phase-shifting method. Opt. Express. 24, 13744 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Demoli, N., Vukicevic, D., Torzynski, M.: Dynamic digital holographic interferometry with three wavelengths. Opt. Express. 11, 767 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Hamada, Y., Sato, K., Fujii, K., Morimoto, M.: Recording and Reconstruction of Practical 3D Color Images by Phase-Shifting Electro-Holography. Proc. SPIE. 6016, 60160X-1 (2005)CrossRefGoogle Scholar
  17. 17.
    Desse, J.M., Picart, P., Tankam, P.: Digital three-color holographic interferometry for flow analysis. Opt. Express. 16, 5471 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Hasegawa, S., Yuki, Y., Sunada, T.: Image Recovery for Low Inclination Angle of Reference Wave in Single-Shot Digital Holography. ISOM-16 (International Symposium on Optical Memory), We-K-03, Kyoto, Japan (2016)Google Scholar
  19. 19.
    Takahama, Y., Matsushima, K.: Single-shot digital holography by using an arbitrary phase-shifting formula. OPJ2009, 25aF6, 278 (2009) (in Japanese)Google Scholar
  20. 20.
    Kelly, D.P., Hennelly, B.M., McElhinney, C., Naughton, J.: T.: A practical guide to digital holography and generalized sampling. Proc. SPIE. 7072, 707215-1 (2008)Google Scholar
  21. 21.
    Aoki, Y., Ishizuka, S.: Numerical two-dimensional Fresnel transform methods, Trans. IECE B 57-B, 511 (1974) (in Japanese)Google Scholar
  22. 22.
    Kelner, R., Rosen, J., Brooker, G.: Enhanced resolution in Fourier incoherent single channel holography (FISCH) with reduced optical path difference. Opt. Express. 21, 20131 (2013)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2018

Authors and Affiliations

  1. 1.Department of Mechanical Systems Engineering, Faculty of EngineeringHiroshima Institute of TechnologyHiroshimaJapan

Personalised recommendations