Enhancement of unidirectional scattering through magnetic and electric resonances by nanodisks’ chain

  • Bo Fang
  • Chenxia Li
  • Xufeng JingEmail author
Regular Paper


Due to all dielectric nanodisks with high refractive index material supporting simultaneously electric and magnetic resonances, unusual properties including entirely forward and backward scattering can be reached by properly design. Here, we show that azimuthally symmetric unidirectional scattering can be achieved by the interference effect of electromagnetic resonances in nanodisks. It is found that unidirectional scattering with small main lobe beamwidth and large magnitude can be further enhanced by a nanoparticle chain. In addition, the dielectric environment, gap distance between nanodisks, and the number of nanodisks in chain are detail analyzed in unidirectional scattering. Our results can be useful in fields of nanoantennas, nanoscale lasers, and photovoltaic elements that need the suppression of backward scattering.


Nanoparticles Scattering Electromagnetic resonances 



The authors acknowledge the support from Natural Science Foundation of Zhejiang Province (LY17F050009), National Key R&D Program of China (Grant no. 2016YFF0100505), and National Natural Science Foundation of China (NSFC) (no. 61405182).


  1. 1.
    Liu, W., Miroshnichenko, A.E., Neshev, D.N., Kivshar, Y.S.: Broadband unidirectional scattering by magneto-electric coreshell nanoparticles. ACS Nano 6(6), 174–178 (2012)Google Scholar
  2. 2.
    Staude, S., Miroshnichenko, A.E., Decker, M., Fofang, N.T., Liu, S., Gonzales, E., Dominguez, J., Luk, T.S., Neshev, D.N., Brener, I., Kivshar, Y.: Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 51(2), 174–178 (2012)Google Scholar
  3. 3.
    Chen, L.R.: Subwavelength grating waveguide devices in silicon-on-insulators for integrated microwave photonics. Chin. Opt. Lett. 15(1), 010004 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Liu, W., Zhang, J., Lei, B., Ma, H., Xie, W., Hu, H.: Ultra-directional forward scattering by individual core-shell nanoparticles. Opt. Express 22, 16178–16187 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Rolly, B., Stout, B., Bonod, N.: Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles. Opt. Express 20, 20376–20386 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Gomez-Medina, R., Garcia-Camara, B., Suarez-Lacalle, I., Gonzalez, F., Moreno, F., Nieto-Vesperinas, M., Saenz, J.J.: Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces. Nanophotonics 5, 053512 (2011)CrossRefGoogle Scholar
  7. 7.
    Alu, A., Engheta, N.: The quest for magnetic plasmons at optical frequencies. Opt. Express 17, 5723–5730 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Krasnok, A.E., Miroshnichenko, A.E., Belov, P.A., Kivshar, Y.S.: All-dielectric optical nanoantennas. Opt. Express 20, 20599–20604 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Fu, Y.H., Kuznetsov, A.I., Miroshnichenko, A.E., Yu, Y.F., Lukyanchuk, B.: Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Zheng, M., Liu, K., Liu, L., Li, Y.: Design of a grating by a joint optimization method for a phase-shifting point diffraction interferometer. Chin. Opt. Lett. 15(10), 101203 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Kerker, M., Wang, D.S., Giles, C.L.: Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am 73, 765–767 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    Garcia-Camara, B., Moreno, F., Gonzalez, F., Saiz, J.M., Videen, G.: Light scattering resonances in small particles with electric and magnetic properties. J. Opt. Soc. Am. A25, 327–334 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Miroshnichenko, A.E.: Non-Rayleigh limit of the Lorenz-mie solution and suppression of scattering by spheres of negative refractive index. Phys. Rev. A 80, 013808 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Evlyukhin, B., Reinhardt, C., Seidel, A., Lukyanchuk, B.S., Chichkov, B.N.: Optical response features of si-nanoparticle arrays. Phys. Rev. B 82, 045404 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Bai, Z., Tao, G., Li, Y., He, J., Wang, K., Wang, G., Jiang, X., Wang, J., Blau, W., Zhang, L.: Fabrication and near-infrared optical responses of 2D periodical Au/ITO nanocomposite arrays. Photonics Res. 5(4), 280–286 (2017)CrossRefGoogle Scholar
  16. 16.
    Garcia-Etxarri, A., Gomez-Medina, R., Froufe-Perez, L.S., Lopez, C., Chantada, L., Scheffold, F., Aizpurua, J., Nieto-Vesperinas, M., Saenz, J.J.: Strong magneticresponse of submicron silicon particles in the infrared. Opt. Express 19, 4815–4826 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Novotny, L., Hecht, B.: Principles of Nano-Optics. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  18. 18.
    Soukoulis, M., Wegener, M.: Past achievements and future chal-lenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523–530 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Novotny, L., Van Hulst, N.: Antennas for light. Nat. Photonics 5, 83–90 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Zhu, W., Jiang, M., Guan, H., Yu, J., Lu, H., Zhang, J., Chen, Z.: Tunable spin splitting of Laguerre–Gaussian beams in graphene metamaterials. Photonics Res. 5(6), 684–688 (2017)CrossRefGoogle Scholar
  21. 21.
    Sun, M., Wang, Y., Huang, Y., Zhou, M., Qi, M., Jiang, Ren, Z.: Enhanced spatial terahertz modulation based on graphene metamaterial. Chin. Opt. Lett. 15(5), 051603 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Wang, W., Yan, F., Tan, S., Zhou, H., Hou, Y.: Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators. Photonics Res. 5(6), 571–577 (2017)CrossRefGoogle Scholar
  23. 23.
    Geffrin, J.M., Garcia-Camara, B., Gomez-Medina, R., Albella, P., Froufe-Perez, L.S., Eyraud, C., Litman, A., Vaillon, R., Gonzalez, F., Nieto-Vesperinaset, M.: Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun 3, 1171 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Alu, A., Engheta, N.: Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nat. Photonics 2, 307–310 (2008)CrossRefGoogle Scholar
  25. 25.
    Hu, J., Liu, X., Zhao, J., Zou, J.: Investigation of Fano resonance in compound resonant waveguide gratings for optical sensing. Chin. Opt. Lett. 15(3), 030502 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Sikdar, I.D., Rukhlenko, W., Cheng, Premaratne, M.: Optimized gold nanoshell ensembles for biomedical applications. Nanoscale Res.Lett 8, 142–146 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Wang, C., Jia, Z., Zhang, K., Zhou, Y., Fan, R., Xiong, X., Peng, R.: Broadband optical scattering in coupled silicon nanocylinders. Appl.Phys. 115, 244312 (2014)CrossRefGoogle Scholar
  29. 29.
    Lal, S., Link, S., Halas, N.J.: Nano-optics from sensing to wave-guiding. Nat. Photonics 1, 641–648 (2007)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  1. 1.College of Metrology and Measurement EngineeringChina Jiliang UniversityHangzhouChina
  2. 2.Institute of Optoelectronic TechnologyChina Jiliang UniversityHangzhouChina

Personalised recommendations