Advertisement

Paracatadioptric camera calibration using sphere images and common self-polar triangles

  • Yue ZhaoEmail author
  • Xiaojuan Yu
Regular Paper
  • 33 Downloads

Abstract

Camera calibration is an indispensable step in achieving stratified three-dimensional reconstruction. In the imaging model of the unit viewing sphere of a central catadioptric camera, there exists a pair of common self-polar triangles between a pair of antipodal sphere images and the image of the great circle on the base plane, so the vertices of the common self-polar triangles can be obtained. According to the imaging characteristics of the sphere on the unit viewing sphere, the line connecting the two common poles outside the conics is a vanishing line, enabling the imaged circular points to be determined. Finally, the intrinsic parameters of the paracatadioptric camera can be found using constraints between the imaged circular points and the image of the absolute conic. Since the boundary points of the sphere image can be almost completely extracted, the curve fitting accuracy can be improved. Experiments with simulated as well as real data demonstrated that our method is feasible and effective.

Keywords

Paracatadioptric camera Common self-polar triangle Sphere image Imaged circular points Camera intrinsic parameters 

Notes

Acknowledgements

The authors would like to express their thanks for the support from the National Natural Science Foundation of China (NSFC) under Grant no. 61663048.

Compliance with ethical standards

Conflict of interest

On behalf of all of the authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Yang, S., Liu, M., Song, J., Yin, S., Guo, Y., Ren, Y., Zhu, J.: Projector calibration method based on stereo vision system. Opt. Rev. 24(5), 727–733 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    Xu, G., Hao, Z., Li, X., Su, J., Liu, H., Zhang, X.: Calibration method of laser plane equation for vision measurement adopting objective function of uniform horizontal height of feature points. Opt. Rev. 23(1), 33–39 (2016)CrossRefGoogle Scholar
  3. 3.
    Srinuanjan, K., Obara, M., Yoshimori, K.: Multispectral hyperbolic incoherent holography. Opt. Rev. 25(1), 65–77 (2018)CrossRefGoogle Scholar
  4. 4.
    Baker, S., Nayar, S.K.: A theory of single-viewpoint catadioptric image formation. Int. J. Comput. Vis. 35(2), 175–196 (1999)CrossRefGoogle Scholar
  5. 5.
    Geyer, C., Daniilidis, K.: Catadioptric projective geometry. Int. J. Comput. Vis. 45(3), 223–243 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Agrawal, M., Davis, L.S.: Camera calibration using spheres: a semi-definite programming approach. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 782–789 (2003)Google Scholar
  7. 7.
    Ying, X., Hu, Z.: Spherical objects based motion estimation for catadioptric cameras. In: Proceedings of the IEEE International Conference on Pattern Recognition, pp. 231–234 (2004)Google Scholar
  8. 8.
    Agrawal, M., Davis, L.S.: Complete camera calibration using spheres: a dual-space approach. Anal. Int. Math. J. Anal. Appl. 34(3), 257–282 (2007)Google Scholar
  9. 9.
    Geyer, C., Daniilidis, K.: Equivalence of catadioptric projections and mappings of the sphere. In: Proceedings of the IEEE Workshop on Omnidirectional Vision, pp. 91–96 (2000)Google Scholar
  10. 10.
    Jia, J., Jiang, G., Cheng-Ke, W.U.: Geometric interpretations and applications of the extrinsic parameters derived from the camera calibration based on spheres. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 160–164 (2010)Google Scholar
  11. 11.
    Daucher, N., Dhome, M., Lapresté, J.T.: Camera calibration from spheres images. In: Proceedings of the Third European Conference on Computer Vision, pp. 449–454 (1994)Google Scholar
  12. 12.
    Ying, X., Zha, H.: A novel linear approach to camera calibration from sphere images. In: Proceedings of the 18th International Conference on Pattern Recognition, pp. 535–538 (2006)Google Scholar
  13. 13.
    Ying, X., Zha, H.: Identical projective geometric properties of central catadioptric line images and sphere images with applications to calibration. Int. J. Comput. Vis. 78(1), 89–105 (2008)CrossRefGoogle Scholar
  14. 14.
    Teramoto, H., Xu, G.: Camera calibration by a single image of balls: from conics to the absolute conic. In: Proceedings of the 5th Asian Conference on Computer Vision, pp. 499–506 (2002)Google Scholar
  15. 15.
    Ying, X., Hu, Z.: Catadioptric camera calibration using geometric invariants. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1260–1271 (2004)CrossRefGoogle Scholar
  16. 16.
    Wong, K.Y., Zhang, G., Chen, Z.: A stratified approach for camera calibration using spheres. IEEE Trans. Image Process. 20(2), 305–316 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhang, H., Wong, K.Y., Zhang, G.: Camera calibration from images of spheres. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 499–502 (2007)CrossRefGoogle Scholar
  18. 18.
    Ying, X., Zha, H.: Geometric interpretations of the relation between the image of the absolute conic and sphere images. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2031–2036 (2006)CrossRefGoogle Scholar
  19. 19.
    Zhang, H., Zhang, G., Wong, K.Y.: Camera calibration with spheres: linear approaches. In: Proceedings of the IEEE International Conference on Image Processing, pp. 1150–1153 (2005)Google Scholar
  20. 20.
    Zhao, Y., Wang, Y.: Intrinsic parameter determination of a paracatadioptric camera by the intersection of two sphere projections. J. Opt. Soc. Am. A 32(11), 2201–2209 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Huang, H., Zhang, H., Cheung, Y.: The common self-polar triangle of concentric circles and its application to camera calibration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4065–4072 (2015)Google Scholar
  22. 22.
    Huang, H., Zhang, H., Cheung, Y.M.: Camera calibration based on the common self-polar triangle of sphere images. In: Proceedings of the Asian Conference on Computer Vision, pp. 19–29 (2014)Google Scholar
  23. 23.
    Huang, H., Zhang, H., Cheung, Y.M.: The common self-polar triangle of separate circles: properties and applications to camera calibration. In: Proceedings of the IEEE International Conference on Image Processing, pp. 1170–1174 (2016)Google Scholar
  24. 24.
    Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press, Cambridge, pp. 1865–1872 (2000)zbMATHGoogle Scholar
  25. 25.
    Duan, F., Wu, F., Zhou, M., Deng, X., Tian, Y.: Calibrating effective focal length for central catadioptric cameras using one space line. Pattern Recogn. Lett. 33(5), 646–653 (2012)CrossRefGoogle Scholar
  26. 26.
    Duan, H., Wu, Y.: A calibration method for paracatadioptric camera from sphere images. Pattern Recogn. Lett. 33(6), 677–684 (2012)CrossRefGoogle Scholar
  27. 27.
    Woods, F.S.: Higher geometry: an introduction to advanced methods in analytic geometry. Dover Publications, Mineola (2005)zbMATHGoogle Scholar
  28. 28.
    Illingworth, J., Kittler, J.: A survey of the Hough transform. Comput. Vis. Graph. Image Process. 43(2), 280–280 (1988)CrossRefGoogle Scholar
  29. 29.
    Meng, X., Hu, Z.: A new easy camera calibration technique based on circular points. Pattern Recogn. 36(5), 1155–1164 (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  1. 1.Institute of Mathematics and StatisticsYunnan UniversityKunmingChina

Personalised recommendations