Advertisement

Optical Review

, Volume 24, Issue 3, pp 462–469 | Cite as

Plasmonic tip for nano Raman microcopy: structures, materials, and enhancement

  • Atsushi Taguchi
Special Section: Invited Review Paper Optics Awards 2016 for excellent papers
Part of the following topical collections:
  1. Optics Awards 2016 for excellent papers

Abstract

Tip-enhanced Raman scattering (TERS) microscopy is becoming an important tool for analyzing advanced nanomaterials and nanodevices because of its high spatial resolution and high sensitivity. However, despite the decade’s efforts since its invention, strong Raman enhancement is still not always reproducible. Here, Author discusses two aspects in plasmonic metal tips to achieve efficient Raman enhancement. The first is the tip structure whose plasmonic properties directly affect the scattering efficiency and thus the enhancement. The second is the plasmonic tip for deep ultraviolet (DUV), with which TERS signal can be further enhanced by incorporating the resonance Raman effect. The materials for DUV-TERS tips are shown. With the efficient tip structures and materials, nano Raman imaging with TERS microscopy becomes more reliable as it should inherently be, bringing TERS microscopy to higher levels as a nanoanalysis tool useful for everyone.

Keywords

Tip-enhanced Raman scattering (TERS) Nano-imaging microscopy Surface plasmons Optical antenna Deep ultraviolet (DUV) Near-field scanning optical microscope (NSOM) 

References

  1. 1.
    Palonpon, A.F., Sodeoka, M., Fujita, K.: Molecular imaging of live cells by Raman microscopy. Curr. Opin. Chem. Biol. 17(4), 708–715 (2013)CrossRefGoogle Scholar
  2. 2.
    Palonpon, A.F., Ando, J., Yamakoshi, H., Dodo, K., Sodeoka, M., Kawata, S., Fujita, K.: Raman and SERS microscopy for molecular imaging of live cells. Nat. Protoc. 8(4), 677–692 (2013)CrossRefGoogle Scholar
  3. 3.
    Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R.R., Feld, M.S.: Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 99(10), 2957–2975 (1999)CrossRefGoogle Scholar
  4. 4.
    Fleischmann, M., Hendra, P.J., McQuillan, A.J.: Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2), 163–166 (1974)ADSCrossRefGoogle Scholar
  5. 5.
    King, F.W., Van Duyne, R., Schatz, G.C.: Theory of Raman-scattering by molecules adsorbed on electrode surfaces. J. Chem. Phys. 69(10), 4472–4481 (1978)ADSCrossRefGoogle Scholar
  6. 6.
    Gersten, J.I.: Rayleigh, Mie, and Raman-scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 72(10), 5780–5781 (1980)ADSCrossRefGoogle Scholar
  7. 7.
    Gersten, J., Nitzan, A.: Electromagnetic theory of enhanced Raman-scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 73(7), 3023–3037 (1980)ADSCrossRefGoogle Scholar
  8. 8.
    Kerker, M., Wang, D.S., Chew, H.: Surface enhanced Raman-scattering (SERS) by molecules adsorbed at spherical-particles. Appl. Opt. 19(24), 4159–4174 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    Mccall, S.L., Platzman, P.M.: Raman-scattering from chemisorbed molecules at surfaces. Phys. Rev. B 22(4), 1660–1662 (1980)ADSCrossRefGoogle Scholar
  10. 10.
    Gersten, J.I.: The effect of surface-roughness on surface enhanced Raman-scattering. J. Chem. Phys. 72(10), 5779–5780 (1980)ADSCrossRefGoogle Scholar
  11. 11.
    Kneipp, K., Wang, Y., Kneipp, H., Perelman, L., Itzkan, I., Dasari, R., Feld, M.: Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78(9), 1667–1670 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    Nie, S., Emery, S.: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303), 1102–1106 (1997)CrossRefGoogle Scholar
  13. 13.
    Inouye, Y., Hayazawa, N., Hayashi, K., Sekkat, Z., Kawata, S.: Near-field scanning optical microscope using a metallized cantilever tip for nanospectroscopy. SPIE’s Int. Symp. Opt. Sci. Eng. Instrum. 3791, 40–48 (1999)ADSGoogle Scholar
  14. 14.
    Hayazawa, N., Inouye, Y., Sekkat, Z., Kawata, S.: Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183(1–4), 333–336 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    Stöckle, R.M., Suh, Y.D., Deckert, V., Zenobi, R.: Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318(1–3), 131–136 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Furukawa, H., Kawata, S.: Local field enhancement with an apertureless near-field-microscope probe. Opt. Commun. 148(4–6), 221–224 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    Hayazawa, N., Inouye, Y., Sekkat, Z., Kawata, S.: Near-field Raman imaging of organic molecules by an apertureless metallic probe scanning optical microscope. J. Chem. Phys. 117(3), 1296–1301 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Hartschuh, A., Sánchez, E.J., Xie, X.S., Novotny, L.: High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90(9), 095503 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Yano, T., Kawata, S.: Diameter-selective near-field Raman analysis and imaging of isolated carbon nanotube bundles. Appl. Phys. Lett. 88(9), 093125 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Stadler, J., Schmid, T., Zenobi, R.: Nanoscale chemical imaging of single-layer graphene. ACS Nano 5(10), 8442–8448 (2011)CrossRefGoogle Scholar
  21. 21.
    Yano, T., Ichimura, T., Kuwahara, S., H’Dhili, F., Uetsuki, K., Okuno, Y., Verma, P., Kawata, S.: Tip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes. Nat. Commun. 4, 2592 (2013)Google Scholar
  22. 22.
    Ichimura, T., Ichimura, T., Hayazawa, N., Hashimoto, M., Inouye, Y., Kawata, S.: Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging. Phys. Rev. Lett. 92(22), 220801 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    Saito, Y., Motohashi, M., Hayazawa, N., Iyoki, M., Kawata, S.: Nanoscale characterization of strained silicon by tip-enhanced Raman spectroscope in reflection mode. Appl. Phys. Lett. 88(14), 143109 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Blum, C., Opilik, L., Atkin, J.M., Braun, K., Kämmer, S.B., Kravtsov, V., Kumar, N., Lemeshko, S., Li, J.F., Luszcz, K., Maleki, T., Meixner, A.J., Minne, S., Raschke, M.B., Ren, B., Rogalski, J., Roy, D., Stephanidis, B., Wang, X., Zhang, D., Zhong, J.H., Zenobi, R.: Tip-enhanced Raman spectroscopy—an interlaboratory reproducibility and comparison study. J. Raman Spectrosc. 45(1), 22–31 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Taguchi, A., Yu, J., Verma, P., Kawata, S.: Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy. Nanoscale 7(41), 17424–17433 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Kawata, S., Inouye, Y., Verma, P.: Plasmonics for near-field nano-imaging and superlensing. Nat. Photonics 3(7), 388–394 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Smolyaninov, I.I., Davis, C.C., Elliott, J., Zayats, A.V.: Resolution enhancement of a surface immersion microscope near the plasmon resonance. Opt. Lett. 30(4), 382–384 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Okamoto, T., Yamaguchi, I.: Near-field scanning optical microscope using a gold particle. Jpn. J. Appl. Phys. 36(Part 2, No. 2A), L166–L169 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    Kalkbrenner, T., Ramstein, M., Mlynek, J., Sandoghdar, V.: A single gold particle as a probe for apertureless scanning near-field optical microscopy. J. Microsc. 202, 72–76 (2001)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Taminiau, T.H., Moerland, R.J., Segerink, F.B., Kuipers, L., van Hulst, N.F.: \(\lambda\)/4 Resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett. 7(1), 28–33 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Maouli, I., Taguchi, A., Saito, Y., Kawata, S., Verma, P.: Optical antennas for tunable enhancement in tip-enhansed Raman spectroscopy imaging. Appl. Phys. Express 8(3), 032401 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Hayazawa, N., Yano, T., Watanabe, H., Inouye, Y., Kawata, S.: Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy. Chem. Phys. Lett. 376(1–2), 174–180 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    Barsegova, I., Lewis, A., Khatchatouriants, A., Manevitch, A., Ignatov, A., Axelrod, N., Sukenik, C.: Controlled fabrication of silver or gold nanoparticle near-field optical atomic force probes: enhancement of second-harmonic generation. Appl. Phys. Lett. 81(18), 3461–3463 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    Umakoshi, T., Yano, T., Saito, Y., Verma, P.: Fabrication of near-field plasmonic tip by photoreduction for strong enhancement in tip-enhanced Raman spectroscopy. Appl. Phys. Express 5(5), 052001 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Schmid, T., Zhang, W., Zenobi, R.: Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips. Anal. Bioanal. Chem. 387(8), 2655–2662 (2007)CrossRefGoogle Scholar
  36. 36.
    Taguchi, A., Hayazawa, N., Saito, Y., Ishitobi, H., Tarun, A., Kawata, S.: Controlling the plasmon resonance wavelength in metal-coated probe using refractive index modification. Opt. Express 17(8), 6509–6518 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Inouye, Y., Kawata, S.: Near-field scanning optical microscope with a metallic probe tip. Opt. Lett. 19(3), 159 (1994)ADSCrossRefGoogle Scholar
  38. 38.
    Zenhausern, F., O’Boyle, M.P., Wickramasinghe, H.K.: Apertureless near-field optical microscope. Appl. Phys. Lett. 65(13), 1623–1625 (1994)ADSCrossRefGoogle Scholar
  39. 39.
    Zhang, W., Yeo, B.S., Schmid, T., Zenobi, R.: Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C 111(4), 1733–1738 (2007)CrossRefGoogle Scholar
  40. 40.
    Ropers, C., Neacsu, C.C., Elsaesser, T., Albrecht, M.G., Raschke, M.B., Lienau, C.: Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett. 7(9), 2784–2788 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Johnson, T.W., Lapin, Z.J., Beams, R., Lindquist, N.C., Rodrigo, S.G., Novotny, L., Oh, S.H.: Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids. ACS Nano 6(10), 9168–9174 (2012)CrossRefGoogle Scholar
  42. 42.
    Takahara, J., Yamagishi, S., Taki, H., Morimoto, A., Kobayashi, T.: Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22(7), 475–477 (1997)ADSCrossRefGoogle Scholar
  43. 43.
    Dickson, R.M., Lyon, L.A.: Unidirectional plasmon propagation in metallic nanowires. J. Phys. Chem. B 104(26), 6095–6098 (2000)CrossRefGoogle Scholar
  44. 44.
    Sánchez, E.J., Krug, J., Xie, X.: Ion and electron beam assisted growth of nanometric SimOn structures for near-field microscopy. Rev. Sci. Instrum. 73(11), 3901–3907 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    Stockman, M.I.: Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93(13), 137404 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    Fang, N., Lee, H., Sun, C., Zhang, X.: Sub-diffraction-limited optical imaging with a silver superlens. Science 308(5721), 534–537 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    Neacsu, C.C., Neacsu, C.C., Berweger, S., Olmon, R.L., Saraf, L.V., Ropers, C., Raschke, M.B.: Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. Nano Lett. 10(2), 592–596 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    Berweger, S., Atkin, J.M., Olmon, R.L., Raschke, M.B.: Adiabatic tip-plasmon focusing for nano-Raman spectroscopy. J. Phys. Chem. Lett. 1(24), 3427–3432 (2010)CrossRefGoogle Scholar
  49. 49.
    Asher, S.A.: UV resonance Raman-spectroscopy for analytical, physical, and biophysical chemistry. 1. Anal. Chem. 65(2), A59–A66 (1993)Google Scholar
  50. 50.
    Rakić, A.D.: Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Appl. Opt. 34(22), 4755–4767 (1995)ADSCrossRefGoogle Scholar
  51. 51.
    Lemonnier, J.C., Jezequel, G., Thomas, J.: Optical properties in the far UV and electronic structure of indium films. J. Phys. C Solid State Phys. 8(17), 2812–2818 (1975)ADSCrossRefGoogle Scholar
  52. 52.
    Palik, E.D.: Handbook of Optical Constants of Solids. Academic press, San Diego (1997)Google Scholar
  53. 53.
    Chan, G.H., Zhao, J., Schatz, G.C., Van Duyne, R.: Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J. Phys. Chem. C 112(36), 13958–13963 (2008)CrossRefGoogle Scholar
  54. 54.
    Langhammer, C., Schwind, M., Kasemo, B., Zoric, I.: Localized surface plasmon resonances in aluminum nanodisks. Nano Lett. 8(5), 1461–1471 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    Knight, M.W., King, N.S., Liu, L., Everitt, H.O., Nordlander, P., Halas, N.J.: Aluminum for plasmonics. ACS Nano 8(1), 834–840 (2014)CrossRefGoogle Scholar
  56. 56.
    Taguchi, A., Saito, Y., Watanabe, K., Yijian, S., Kawata, S.: Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures. Appl. Phys. Lett. 101(8), 081110 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    Ekinci, Y., Solak, H.H., Löffler, J.F.: Plasmon resonances of aluminum nanoparticles and nanorods. J. Appl. Phys. 104(8), 083107 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    Dörfer, T., Schmitt, M., Popp, J.: Deep-UV surface-enhanced Raman scattering. J. Raman Spectrosc. 38(11), 1379–1382 (2007)ADSCrossRefGoogle Scholar
  59. 59.
    Taguchi, A., Hayazawa, N., Furusawa, K., Ishitobi, H., Kawata, S.: Deep-UV tip-enhanced Raman scattering. J. Raman Spectrosc. 40(9), 1324–1330 (2009)ADSCrossRefGoogle Scholar
  60. 60.
    Jha, S.K., Ahmed, Z., Agio, M., Ekinci, Y., Löffler, J.F.: Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays. J. Am. Chem. Soc. 134(4), 1966–1969 (2012)CrossRefGoogle Scholar
  61. 61.
    Kumamoto, Y., Taguchi, A., Honda, M., Watanabe, K., Saito, Y., Kawata, S.: Indium for deep-ultraviolet surface-enhanced resonance Raman scattering. ACS Photonics 1(7), 598–603 (2014)CrossRefGoogle Scholar
  62. 62.
    Evertsson, J., Bertram, F., Zhang, F., Rullik, L., Merte, L.R., Shipilin, M., Soldemo, M., Ahmadi, S., Vinogradov, N., Carlà, F., Weissenrieder, J., Göthelid, M., Pan, J., Mikkelsen, A., Nilsson, J.O., Lundgren, E.: The thickness of native oxides on aluminum alloys and single crystals. Appl. Surf. Sci. 349, 826–832 (2015)CrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2017

Authors and Affiliations

  1. 1.Department of Applied PhysicsOsaka UniversitySuitaJapan

Personalised recommendations