Optical Review

, Volume 24, Issue 2, pp 117–120 | Cite as

Object recognition through a multi-mode fiber

Regular Paper

Abstract

We present a method of recognizing an object through a multi-mode fiber. A number of speckle patterns transmitted through a multi-mode fiber are provided to a classifier based on machine learning. We experimentally demonstrated binary classification of face and non-face targets based on the method. The measurement process of the experimental setup was random and nonlinear because a multi-mode fiber is a typical strongly scattering medium and any reference light was not used in our setup. Comparisons between three supervised learning methods, support vector machine, adaptive boosting, and neural network, are also provided. All of those learning methods achieved high accuracy rates at about 90% for the classification. The approach presented here can realize a compact and smart optical sensor. It is practically useful for medical applications, such as endoscopy. Also our study indicated a promising utilization of artificial intelligence, which has rapidly progressed, for reducing optical and computational costs in optical sensing systems.

Keywords

Object recognition and classification Machine learning Multi-mode fiber Support vector machine Adaptive boosting Neural network 

References

  1. 1.
    Narasimhan, S.G., Nayar, S.K.: Structured light methods for underwater imaging: light stripe scanning and photometric stereo. In: Proceedings of 2005 MTS/IEEE OCEANS, vol. 3, pp. 2610–2617 (2005)Google Scholar
  2. 2.
    Gu, J., Nayar, S., Grinspun, E., Belhumeur, P., Ramamoorthi, R.: Compressive structured light for recovering inhomogeneous participating media. In: Proc. 10th Eur. Conf. Comput. Vis. Part IV, pp. 845–858. Springer, Berlin, Heidelberg (2008)Google Scholar
  3. 3.
    Ando, T., Horisaki, R., Nakamura, T., Tanida, J.: Single-shot acquisition of optical direct and global components using single coded pattern projection. Jpn. J. Appl. Phys. 54(4), 42501 (2015)CrossRefGoogle Scholar
  4. 4.
    Durán, V., Soldevila, F., Irles, E., Clemente, P., Tajahuerce, E., Andrés, P., Lancis, J.: Compressive imaging in scattering media. Opt. Express 23(11), 14424–14433 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Ando, T., Horisaki, R., Tanida, J.: Three-dimensional imaging through scattering media using three-dimensionally coded pattern projection. Appl. Opt. 54(24), 7316–7322 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Moon, I., Javidi, B.: Three-dimensional visualization of objects in scattering medium by use of computational integral imaging. Opt. Express 16(17), 13080–13089 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Cho, M., Javidi, B.: Three-dimensional visualization of objects in turbid water using integral imaging. Disp. Technol. J. 6(10), 544–547 (2010)CrossRefGoogle Scholar
  8. 8.
    Shin, D., Javidi, B.: Visualization of 3D objects in scattering medium using axially distributed sensing. Disp. Technol. J. 8(6), 317–320 (2012)CrossRefGoogle Scholar
  9. 9.
    Popoff, S.M., Lerosey, G., Carminati, R., Fink, M., Boccara, A.C., Gigan, S.: Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104(10), 100601 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Liutkus, A., Martina, D., Popoff, S., Chardon, G., Katz, O., Lerosey, G., Gigan, S., Daudet, L., Carron, I.: Imaging with nature: compressive imaging using a multiply scattering medium. Sci. Rep. 4, 5552 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Nakamura, T., Horisaki, R., Tanida, J.: Compact wide-field-of-view imager with a designed disordered medium. Opt. Rev. 22(1), 19–24 (2015)CrossRefGoogle Scholar
  12. 12.
    Kim, M., Choi, W., Choi, Y., Yoon, C., Choi, W.: Transmission matrix of a scattering medium and its applications in biophotonics. Opt. Express 23(10), 12648–12668 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Horisaki, R., Takagi, R., Tanida, J.: Learning-based imaging through scattering media. Opt. Express 24(13), 13738–13743 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Bertolotti, J., van Putten, E.G., Blum, C., Lagendijk, A., Vos, W.L., Mosk, A.P.: Non-invasive imaging through opaque scattering layers. Nature 491(7423), 232–234 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Katz, O., Heidmann, P., Fink, M., Gigan, S.: Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics 8(10), 784–790 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Katz, O., Small, E., Guan, Y., Silberberg, Y.: Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers. Optica 1(3), 170–174 (2014)CrossRefGoogle Scholar
  17. 17.
    Ando, T., Horisaki, R., Tanida, J.: Speckle-learning-based object recognition through scattering media. Opt. Express 23(26), 33902–33910 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Knittel, J., Schnieder, L., Buess, G., Messerschmidt, B., Possner, T.: Endoscope-compatible confocal microscope using a gradient index-lens system. Optics Commun. 188(56), 267–273 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Bianchi, S., Di Leonardo, R.: A multi-mode fiber probe for holographic micromanipulation and microscopy. Lab Chip 12(3), 635–639 (2012)CrossRefGoogle Scholar
  20. 20.
    Mahalati, R.N., Gu, R.Y., Kahn, J.M.: Resolution limits for imaging through multi-mode fiber. Opt. Express 21(2), 1656–1668 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Papadopoulos, I.N., Farahi, S., Moser, C., Psaltis, D.: High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed. Opt. Express 4(2), 260–270 (2013)CrossRefGoogle Scholar
  22. 22.
    Bianchi, S., Rajamanickam, V.P., Ferrara, L., Fabrizio, E.D., Liberale, C., Leonardo, R.D.: Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics. Opt. Lett. 38(23), 4935–4938 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Plöschner, M., Tyc, T., Čižmár, T.: Seeing through chaos in multimode fibres. Nature Photonics 9, 529–535 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2, 121–167 (1998)CrossRefGoogle Scholar
  25. 25.
    Wang, L.: Support Vector Machines: Theory and Applications, vol. 177 of Studies in Fuzziness and Soft Computing. Springer, Berlin (2005)CrossRefGoogle Scholar
  26. 26.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Freund, Y., Schapire, R.E.: A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 14, 771–780 (1999)Google Scholar
  28. 28.
    Gurney, K.: An Introduction to Neural Networks. Taylor & Francis Inc, Bristol (1997)CrossRefGoogle Scholar
  29. 29.
    Hu, Y.H.: Handbook of Neural Network Signal Processing, 1st edn. CRC Press Inc, Boca Raton (2000)Google Scholar
  30. 30.
    Caltech computer vision database. http://www.vision.caltech.edu/archive.html. Accessed 1 Feb 2017

Copyright information

© The Optical Society of Japan 2017

Authors and Affiliations

  1. 1.Department of Information and Physical Sciences, Graduate School of Information Science and TechnologyOsaka UniversityOsakaJapan

Personalised recommendations