Optical Review

, Volume 24, Issue 2, pp 105–116 | Cite as

Spectrally optimal illuminations for diabetic retinopathy detection in retinal imaging

  • Piotr Bartczak
  • Pauli Fält
  • Niko Penttinen
  • Pasi Ylitepsa
  • Lauri Laaksonen
  • Lasse Lensu
  • Markku Hauta-Kasari
  • Hannu Uusitalo
Regular Paper


Retinal photography is a standard method for recording retinal diseases for subsequent analysis and diagnosis. However, the currently used white light or red-free retinal imaging does not necessarily provide the best possible visibility of different types of retinal lesions, important when developing diagnostic tools for handheld devices, such as smartphones. Using specifically designed illumination, the visibility and contrast of retinal lesions could be improved. In this study, spectrally optimal illuminations for diabetic retinopathy lesion visualization are implemented using a spectrally tunable light source based on digital micromirror device. The applicability of this method was tested in vivo by taking retinal monochrome images from the eyes of five diabetic volunteers and two non-diabetic control subjects. For comparison to existing methods, we evaluated the contrast of retinal images taken with our method and red-free illumination. The preliminary results show that the use of optimal illuminations improved the contrast of diabetic lesions in retinal images by 30–70%, compared to the traditional red-free illumination imaging.


Imaging systems Ophthalmology Ophthalmic optics and devices Medical optics instrumentation Illumination design Image enhancement 



The authors would like to thank the Academy of Finland for funding (ReVision project, Funding Decision No. 259530). The strategic funding from the Faculty of Science and Forestry, University of Eastern Finland and Elsemay Börn Fund are also acknowledged. The authors would like to thank Elina Hietanen, for support and assistance with the imaging.


  1. 1.
    Guariguata, L., Whiting, D.R., Hambleton, I., Beagley, J., Linnenkamp, U., Shaw, J.E.: Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 103(2), 137–149 (2014)CrossRefGoogle Scholar
  2. 2.
    Koski, S.: Diabetesbarometri 2010, (Diabetes barometer 2010, published in Finnish) DEHKO, The Finnish Diabetes Association, 2011 [Online]. Retrieved:
  3. 3.
    Jarvala, T., Raitanen, J., Rissanen, P.: Diabeteksen kustannukset Suomessa 1998–2007, (The costs of diabetes in Finland 1998–2007, published in Finnish), The Finnish Diabetes Association and Tampere University, 2010 [Online]. Retrieved:
  4. 4.
    Sivaprasad, S., Gupta, B., Crosby-Nwaobi, R., Evans, J.: Prevalence of diabetic retinopathy in various ethnic groups: a worldwide perspective. Surv. Ophthalmol. 57(4), 347–370 (2012)CrossRefGoogle Scholar
  5. 5.
    Fleming, A.D., Philip, S., Goatman, K., Olson, J., Sharp, P.F.: Automated microaneurysm detection using local contrast normalization and local vessel detection. IEEE Trans. Med. Imag. 25(9), 1223–1232 (2006)CrossRefGoogle Scholar
  6. 6.
    Kubecka, L., Jan, J., Kolar, R.: Retrospective illumination correction of retinal images. J. Biomed. Imaging 2010(11), 780262 (2010). doi: 10.1155/2010/780262
  7. 7.
    Leahy, C., O’Brien, A., Dainty, C.: Illumination correction of retinal images using Laplace interpolation. Appl. Opt. 51(35), 8383–8389 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Youssif, A.A., Ghalwash, A.Z., Ghoneim, A.S.: Comparative study of contrast enhancement and illumination equalization methods for retinal vasculature segmentation. In: Proceedings of the Third Cairo International Biomedical Engineering Conference (2006), pp. 1–5Google Scholar
  9. 9.
    Feng, P., Pan, Y., Wei, B., Jin, W., Mi, D.: Enhancing retinal image by the Contourlet transform. Pattern Recognit. Lett. 28(4), 516–522 (2007)CrossRefGoogle Scholar
  10. 10.
    Shimahara, T., Okatani, T., Deguchi, K.: Contrast enhancement of fundus images using regional histograms for medical diagnosis. In: SICE 2004 Annual Conference, pp. 650–653Google Scholar
  11. 11.
    Cornforth, D.J., Jelinek, H.F., Leandro, J.J.G., Soares, J.V.B., Cesar-Jr, R.M., Cree, M.J., Mitchell, P., Bossamaier, T.: Development of retinal blood vessel segmentation methodology using wavelet transforms for assessment of diabetic retinopathy. In: Proceedings of 8th Asia Pacific Symposium Intelligent and Evolutionary Systems, pp. 50–60 (2004)Google Scholar
  12. 12.
    Youssif, A.A.H.A.R., Ghalwash, A.Z., Ghoneim, A.R.: Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE Trans. Med. Imaging 27(1), 11–18 (2008)Google Scholar
  13. 13.
    Hipwell, J.H., Strachan, F., Olson, J.A., McHardy, K.C., Sharp, P.F., Forrester, J.V.: Automated detection of microaneurysms in digital red-free photographs: a diabetic retinopathy screening tool. Diabet. Med. 17(8), 588–594 (2000)CrossRefGoogle Scholar
  14. 14.
    Fält, P., Hiltunen, J., Hauta-Kasari, M., Sorri, I., Kalesnykiene, V., Pietilä, J., Uusitalo, H.: Spectral imaging of the human retina and computationally determined optimal illuminants for diabetic retinopathy lesion detection. J. Imaging Sci. Technol. 55(3), 1–10 (2011)CrossRefGoogle Scholar
  15. 15.
    Bartczak, P., Čerāne, D., Fält, P., Ylitepsa, P., Hietanen, E., Penttinen, N., Laaksonen, L., Lensu, L., Hauta-Kasari, M., Uusitalo, H.: Spectrally tunable light source based on digital micromirror device for retinal image contrast enhancement. Lith. J. Phys. 55(3), 174–181 (2015)CrossRefGoogle Scholar
  16. 16.
    Hauta-Kasari, M., Miyazawa, K., Toyooka, S., Parkkinen, J.: Spectral vision system for measuring color images. J. Opt. Soc. Am. A 16(10), 2352–2362 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    Brown, S.W., Santana, C., Eppeldauer, G.P.: Development of a tunable LED-based colorimetric source. J. Res. Natl. Inst. Stand. Technol. 107(4), 363–371 (2002)CrossRefGoogle Scholar
  18. 18.
    Tominaga, S., Horiuchi, T., Kakinuma, H., Kimachi, A.: Spectral imaging with a programmable light source. In: Color and Imaging Conference, vol. 2009 of Journal of Imaging Science and Technology, pp. 133–138Google Scholar
  19. 19.
    Chakrova, N., Rieger, B., Stallinga, S.: Development of a DMD-based fluorescence microscope. In: Proceedings of SPIE BiOS, vol. 9330, p. 933008 (2015)Google Scholar
  20. 20.
    Muller, M.S., Green, J.J., Baskaran, K., Ingling, A.W., Clendenon, J.L., Gast, T.J., Elsner, A.E.: Non-mydriatic confocal retinal imaging using a digital light projector. Proc. SPIE OPTO 9376, 93760 (2015)ADSGoogle Scholar
  21. 21.
    Chuang, C.H., Lo, Y.L.: Digital programmable light spectrum synthesis system using a digital micromirror device. Appl. Opt. 45(32), 8308–8314 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Brown, S.W., Rice, J.P., Neira, J.E., Johnson, B.C., Jackson, J.D.: Spectrally tunable sources for advanced radiometric applications. J. Res. Natl. Inst. Stand. Technol. 111(5), 401–410 (2006)CrossRefGoogle Scholar
  23. 23.
    MacKinnon, N., Stange, U., Lane, P., MacAulay, C., Quatrevalet, M.: Spectrally programmable light engine for in vitro or molecular imaging and spectroscopy. Appl. Opt. 44(20), 33–40 (2005)Google Scholar
  24. 24.
    Litorja, M., Brown, S.W., Nadal, M.E., Allen, D., Gorbach, A.: Development of surgical lighting for enhanced color contrast. In: Proceedings of SPIE MI, vol. 6515, p. 65150K (2007)Google Scholar
  25. 25.
    Shen, J., Wang, H., Wu, Y., Li, A., Chen, C., Zheng, Z.: Surgical lighting with contrast enhancement based on spectral reflectance comparison and entropy analysis. J. Biomed. Opt. 20(10), 105012–105012 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Firn, K.A., Khoobehi, B.: Novel noninvasive multispectral snapshot imaging system to measure and map the distribution of human vessel and tissue hemoglobin oxygen saturation. Int. J. Ophthalmol. Res. 1(2), 48–58 (2015)CrossRefGoogle Scholar
  27. 27.
    Bone, R.A., Brener, B., Gibert, J.C.: Macular pigment, photopigments, and melanin: distributions in young subjects determined by four-wavelength reflectometry. Vis. Res. 47(26), 3259–3268 (2007)CrossRefGoogle Scholar
  28. 28.
    Xu, Y., Liu, X., Cheng, L., Su, L., Xu, X.: A light-emitting diode (LED)-based multispectral imaging system in evaluating retinal vein occlusion. Lasers Surg. Med. 47(7), 549–558 (2015)CrossRefGoogle Scholar
  29. 29.
    Everdell, N.L., Styles, I.B., Calcagni, A., Gibson, J., Hebden, J., Claridge, E.: Multispectral imaging of the ocular fundus using light emitting diode illumination. Rev. Sci. Instrum. 81(9), 093706 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Calcagni, A., Gibson, J.M., Styles, I.B., Claridge, E., Orihuela-Espina, F.: Multispectral retinal image analysis: a novel non-invasive tool for retinal imaging. Eye 25(12), 1562–1569 (2011)CrossRefGoogle Scholar
  31. 31.
    Styles, I.B., Calcagni, A., Claridge, E., Orihuela-Espina, F., Gibson, J.M.: Quantitative analysis of multi-spectral fundus images. Med. Image Anal. 10, 578–597 (2006)CrossRefGoogle Scholar
  32. 32.
    Johnson, W.R., Wilson, D.W., Fink, W., Humayun, M., Bearman, G.: Snapshot hyperspectral imaging in ophthalmology. J. Biomed. Opt. 12(1), 014036 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Francis, R.P., Zuzak, K.J., Ufret-Vincenty, R.: Hyperspectral retinal imaging with a spectrally tunable light source. In: Proceedings of SPIE MOEMS-MEMS, vol. 7932, pp. 793206–793206-8K (2011)Google Scholar
  34. 34.
    Patel, S.R., Flanagan, J.G., Shahidi, A.M., Sylvestre, J.P., Hudson, C.: A prototype hyperspectral system with a tunable laser source for retinal vessel imaging. Invest. Ophthalmol. Vis. Sci. 54(8), 5163–5168 (2013)CrossRefGoogle Scholar
  35. 35.
    Fält, P., Hiltunen, J., Hauta-Kasari, M., Sorri, I., Kalesnykiene, V., Uusitalo, H.: Extending diabetic retinopathy imaging from color to spectra. In: Proceedings of the Scandinavian Conference on Image Analysis 2009, pp. 149–158Google Scholar
  36. 36.
    Delori, F.C., Webb, R.H., Sliney, D.H.: Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. J. Opt. Soc. Am. A 24(5), 1250–1265 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Leong, F.W., Brady, M., McGee, J.O.D.: Correction of uneven illumination (vignetting) in digital microscopy images. J. Clin. Pathol. 56(8), 619–621 (2003)CrossRefGoogle Scholar
  38. 38.
    Tran, K., Mendel, T.A., Holbrook, K.L., Yates, P.A.: Construction of an inexpensive, hand-held fundus camera through modification of a consumer “point-and-shoot” camera. Invest. Ophthalmol. Vis. Sci. 53(12), 7600–7607 (2012)CrossRefGoogle Scholar
  39. 39.
    Michelson, A.A.: Studies in Optics. University of Chicago Press, Chicago (1927)zbMATHGoogle Scholar

Copyright information

© The Optical Society of Japan 2017

Authors and Affiliations

  1. 1.School of Computing and Institute of PhotonicsUniversity of Eastern FinlandJoensuuFinland
  2. 2.Focus Action Ltd.YlöjärviFinland
  3. 3.Department of Ophthalmology, the SILK Research and Development Center for Ophthalmic Innovations, School of MedicineUniversity of TampereTampereFinland
  4. 4.Tays Eye CenterTampereFinland
  5. 5.Machine Vision and Pattern Recognition LaboratoryLappeenranta University of TechnologyLappeenrantaFinland

Personalised recommendations