Optical Review

, Volume 22, Issue 5, pp 802–808 | Cite as

Enhancing resolution of single-pixel imaging system

  • Dongfeng Shi
  • Jian Huang
  • Feng Wang
  • Kaifa Cao
  • Kee YuanEmail author
  • Shunxing Hu
  • Yingjian Wang
Regular Paper


In this paper, we propose a subpixel-shifted method to overcome the limitations on the resolution of an image obtained from single-pixel imaging system. In the proposed method, modulation system is moved by sub-integer low grid units, and new information contained in each shifted low grid area can be exploited to obtain a high-resolution image. The front and back modulation single-pixel imaging systems are analyzed. Based on the shifted and point spread function parameters, this method using compressed sensing algorithm can overcome the limitative resolution generated by the modulation system pixel size and transmission effect to get high-resolution image. Finally, the machining experiment results prove the effective of the proposed method.


Imaging system Image enhancement Super-resolution 



The work was supported by the National Natural Science Foundation of China (Grant Nos. 11404344, 41475001, 41205020, and 41127901).


  1. 1.
    Sun, B., Edgar, M.P., Bowman, R., Vittert, L.E., Welsh, S., Bowman, A., Padgett, M.J.: 3D computational imaging with single-pixel detectors. Science 340, 844–847 (2013)CrossRefADSGoogle Scholar
  2. 2.
    Horiuchi, N.: Computational imaging colour imaging with single-pixel detectors. Nat. Photonics 7, 943 (2013)CrossRefADSGoogle Scholar
  3. 3.
    Welsh, S.S., Edgar, M.P., Bowman, R., Jonathan, P., Sun, B.Q., Padgett, M.J.: Fast full-color computational imaging with single-pixel detectors. Opt. Express 21, 23068–23074 (2013)CrossRefADSGoogle Scholar
  4. 4.
    Howland, G.A., Lum, D.J., Ware, M.R., Howell, J.C.: Photon counting compressive depth mapping. Opt. Express 21, 23822–23837 (2013)CrossRefADSGoogle Scholar
  5. 5.
    Zhao, C.Q., Gong, W.L., Chen, M.L., Li, E.R., Wang, H., Xu, W.D., Han, S.S.: Ghost imaging lidar via sparsity constraints. Appl. Phys. Lett. 101, 141123 (2012)CrossRefADSGoogle Scholar
  6. 6.
    M. Assmann and M. Bayer, “Compressive adaptive computational ghost imaging,” Sci. Rep-Uk 3 (2013)Google Scholar
  7. 7.
    Yu, W., Li, M., Yao, X., Liu, X., Wu, L., Zhai, G.: Adaptive compressive ghost imaging based on wavelet trees and sparse representation. Opt. Express 22(6), 7133–7144 (2014)CrossRefADSGoogle Scholar
  8. 8.
    Chen, J., Gong, W., Han, S.: Sub-Rayleigh ghost imaging via sparsity constraints based on a digital micro-mirror device. Phys. Lett. A 377, 1844–1847 (2013)CrossRefADSGoogle Scholar
  9. 9.
    Olivas, S.J., Rachlin, Y., Gu, L., Gardiner, B., Dawson, R., Laine, J.-P., Ford, J.E.: Characterization of a compressive imaging system using laboratory and natural light scenes. Appl. Optics 52, 4515–4526 (2013)CrossRefADSGoogle Scholar
  10. 10.
    Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J.N., Sun, T., Kelly, K.F., Baraniuk, R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25, 83–91 (2008)CrossRefADSGoogle Scholar
  12. 12.
    Chan, W.L., Charan, K., Takhar, D., Kelly, K.F., Baraniuk, R.G., Mittleman, D.M.: A single-pixel terahertz imaging system based on compressed sensing. Appl. Phys. Lett. 93, 121105 (2008)CrossRefADSGoogle Scholar
  13. 13.
    Magalhães, F., Araújo, F.M., Correia, M.V., Abolbashari, M., Farahi, F.: Active illumination single-pixel camera based on compressive sensing. Appl. Optics 50, 405–414 (2011)CrossRefADSGoogle Scholar
  14. 14.
    Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. Sig. Process. Mag. IEEE 20(3), 21–36 (2003)CrossRefADSGoogle Scholar
  15. 15.
    Farsiu, S., Robinson, M.D., Elad, M., et al.: Fast and robust multiframe super resolution. IEEE Trans. Image Process. 13(10), 1327–1344 (2004)CrossRefADSGoogle Scholar
  16. 16.
    Wang, Z.L., Zhu, J.B., Yan, F.X., Jia, H.: Superresolution imaging by dynamic single-pixel compressive sensing system. Opt. Eng. 52, 063201 (2013)CrossRefADSGoogle Scholar
  17. 17.
    Goodman, J.W.: Introduction to fourier optics. McGraw-Hill, New York (1996)Google Scholar
  18. 18.
  19. 19.
    M. Brookes. Matrix reference manual. [Online]. Available:
  20. 20.
    Sroubek, F., Cristóbal, G., Flusser, J.: Simultaneous super-resolution and blind deconvolution. J. Phys. Conf. Ser. 124(1), 012048 (2008). (IOP Publishing) CrossRefADSGoogle Scholar
  21. 21.

Copyright information

© The Optical Society of Japan 2015

Authors and Affiliations

  • Dongfeng Shi
    • 1
  • Jian Huang
    • 1
  • Feng Wang
    • 1
    • 2
    • 3
  • Kaifa Cao
    • 1
  • Kee Yuan
    • 1
    Email author
  • Shunxing Hu
    • 1
  • Yingjian Wang
    • 1
    • 2
  1. 1.Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine MechanicsChinese Academy of SciencesHefeiChina
  2. 2.University of Science and Technology of ChinaHefeiChina
  3. 3.State Key Laboratory of Pulsed Power Laser TechnologyElectronic Engineering InstituteHefeiChina

Personalised recommendations