Optical Review

, Volume 22, Issue 5, pp 841–843 | Cite as

Fast computer simulation of reconstructed image from rainbow hologram based on GPU

Special Section: Regular Paper International Workshop on Holography and related technologies (IWH2014), Beijing, China
Part of the following topical collections:
  1. International Workshop on Holography and related technologies (IWH2014), Beijing, China

Abstract

A fast computer simulation solution for rainbow hologram reconstruction based on GPU is proposed. In the commonly used segment Fourier transform method for rainbow hologram reconstruction, the computation of 2D Fourier transform on each hologram segment is very time consuming. GPU-based parallel computing can be applied to improve the computing speed. Compared with CPU computing, simulation results indicate that our proposed GPU computing can effectively reduce the computation time by as much as eight times.

Keywords

Rainbow hologram Reconstruction Simulation Fourier transform GPU 

References

  1. 1.
    Tsang, P.W.M., Liu, J.P., Cheung, K.W.K., Poon, T.-C.: Modern methods for fast generation of digital holograms. 3D Res. 1(2), 11 (2010)CrossRefGoogle Scholar
  2. 2.
    Ulf, S., Jüptner, W.P.: Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33(2), 179 (1994)CrossRefGoogle Scholar
  3. 3.
    Nobuyuki, M., Ito, T., Tanaka, T., Shiraki, A., Sugie, T.: Computer generated holography using a graphics processing unit. Opt. Express 14(2), 603 (2006)CrossRefADSGoogle Scholar
  4. 4.
    Tomoyoshi, S., Ito, T., Masuda, N., Ichihashi, Y., Takada, N.: Fast calculation of computer-generated-hologram on AMD HD5000 series GPU and OpenCL. Opt. Express 18(10), 9955 (2010)CrossRefGoogle Scholar
  5. 5.
    Pan, Y., Xu, X., Solanki, S., Liang, X., Tanjung, R.B.A., Tan, C., Chong, T.-C.: Fast CGH computation using S-LUT on GPU. Opt. Express 17(21), 18543 (2009)CrossRefADSGoogle Scholar
  6. 6.
    Tomoyoshi, S., Sato, Y., Miura, J., Takenouchi, M., Ito, T.: Real-time digital holographic microscopy using the graphic processing unit. Opt. Express 16(16), 11776 (2008)CrossRefADSGoogle Scholar
  7. 7.
    Kang, H., Yaraş, F., Onural, L.: Graphics processing unit accelerated computation of digital holograms. Appl. Opt. 48(34), 137 (2009)CrossRefGoogle Scholar
  8. 8.
    Ulf, S., Jüptner, W.P.: Meas. Sci. Technol. 13(9), R85 (2002)CrossRefGoogle Scholar
  9. 9.
    Sergio, D.N., Pierattini, A.F.G., Ferraro, P., Alfieri, D.: Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes. Opt. Express 13(24), 9935 (2005)CrossRefADSGoogle Scholar
  10. 10.
    Yu, L., Cai, L.: Iterative algorithm with a constraint condition for numerical reconstruction of a three-dimensional object from its hologram. J. Opt. Soc. Am. A 18(5), 1033 (2001)CrossRefADSGoogle Scholar
  11. 11.
    Yasuhiro, T., Ohzu, H.: Fast numerical reconstruction technique for high-resolution hybrid holographic microscopy. Appl. Opt. 38(11), 2204 (1999)CrossRefGoogle Scholar
  12. 12.
    Yoshikawa, H. Yamaguchi, T., Fujita, H.: OSA digital holography and three-dimensional imaging, paper DTuD3 (2007)Google Scholar
  13. 13.
    Yasuda, T., Kitamura, M., Watanabe, M., Tsumuta, M., Yamaguchi, T., Yoshikawa, H.: Computer simulation of reconstructed image for computer-generated holograms. Proc. SPIE 7233, 72330H (2009)CrossRefADSGoogle Scholar
  14. 14.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297 (1965)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Frigo, M., Johnson, S. G.: FFTW library (http://www.fftw.org/)

Copyright information

© The Optical Society of Japan 2015

Authors and Affiliations

  1. 1.Department of Electronic EngineeringCity University of Hong KongKowloonChina
  2. 2.Opto-Electronics Lab, Department of Computer Engineering, College of Science and TechnologyNihon UniversityFunabashiJapan

Personalised recommendations