Optical Review

, Volume 22, Issue 3, pp 385–392 | Cite as

Tapered optical fiber coated with graphene based nanomaterials for measurement of ethanol concentrations in water

  • Saad H. GireiEmail author
  • Atafat A. Shabaneh
  • Hong Ngee-Lim
  • Mohd N. Hamidon
  • Mohd A. Mahdi
  • Mohd H. Yaacob
Regular Paper


Tapered optical fibers coated with graphene and graphene oxide (GO) as the active layer for ethanol sensing were reported. The multimode optical fiber with 125 µm diameter was tapered to 40 µm diameter to enhance the sensitivity. Graphene and GO thin films were characterized using a scanning electron microscopy, Raman spectroscopy and ultraviolet–visible (UV–Vis) spectroscopy. The absorbance properties of the developed sensors increased when exposed to ethanol due to the change of light in the evanescent field. The sensing results indicated that the GO-coated sensor showed better performance with absorbance change of 80 % towards ethanol concentration of 5 % when compared to graphene-coated sensor with 40 % absorbance change towards ethanol with similar concentrations. The reliable response of the graphene and GO-coated on tapered fibers for detecting ethanol concentrations was achieved at room temperature.


Graphene Optical fiber sensor Absorbance Ethanol sensor Tapered optical fiber 



The authors would like to acknowledge Universiti Putra Malaysia for the project fund under Research University Grant Scheme (RUGS) No. 05-02-12-2015RU and 05-02-12-1882RU.


  1. 1.
    Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010)CrossRefGoogle Scholar
  2. 2.
    Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)CrossRefADSGoogle Scholar
  3. 3.
    Bi, H., Yin, K., Xie, X., Ji, J., Wan, S., Sun, L., Terrones, M., Dresselhaus, M.S.: Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 3(5), 2714 (2013)ADSGoogle Scholar
  4. 4.
    Lokman, N.F., Bakar, A.A.A., Suja, F., Abdullah, H., Rahman, W.B.W.A., Huang, N.-M., Yaacob, M.H.: Highly sensitive SPR response of Au/chitosan/graphene oxide nanostructured thin films toward Pb(II) ions. Sens. Actuators B: Chem. 195, 459–466 (2014)CrossRefGoogle Scholar
  5. 5.
    Prezioso, S., Perrozzi, F., Giancaterini, L., Cantalini, C., Treossi, E., Palermo, V., Nardone, M., Santucci, S., Ottaviano, L.: Graphene oxide as a practical solution to high sensitivity gas sensing. J. Phys. Chem. C. 117(20), 10683–10690 (2013)CrossRefGoogle Scholar
  6. 6.
    Grattan, K.T.V., Meggitt B.T.: Optical Fiber Sensor Technology. Springer Science, Dordrecht (1999)CrossRefGoogle Scholar
  7. 7.
    Zhang, L., Gu, F., Lou, J., Yin, X., Tong, L.: Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film. Opt. Express 16(17), 13349–13353 (2008)CrossRefADSGoogle Scholar
  8. 8.
    Harun, S., Batumalay, M., Ahmad, F.: Tapered plastic optical fiber coated with single wall carbon nanotubes polyethylene oxide composite for measurement of uric acid concentration. Sensor 34, 75–79 (2014)CrossRefGoogle Scholar
  9. 9.
    Jin, W., Ho, H., Cao, Y., Ju, J., Qi, L.: Gas detection with micro-and nano-engineered optical fibers. Opt. Fiber Technol. 19, 741–759 (2013)CrossRefADSGoogle Scholar
  10. 10.
    Villatoro, J., Monzón-hernández, D.: Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers. Opt. Express 13(13), 5087–5092 (2005)CrossRefADSGoogle Scholar
  11. 11.
    Elosúa, C., Bariáin, C., Matías, I.R., Arregui, F.J., Luquin, A., Laguna, M.: Volatile alcoholic compounds fibre optic nanosensor. Sens. Actuators B: Chem. 115(1), 444–449 (2006)CrossRefGoogle Scholar
  12. 12.
    Golden, J., Anderson, G.: An evanescent wave biosensor. II. Fluorescent signal acquisition from tapered fiber optic probes. IEEE Trans. Biomed. Eng. 41(6), 585–591 (1994)CrossRefGoogle Scholar
  13. 13.
    King, D., Lyons, W.B., Flanagan, C., Lewis, E.: Interpreting complex data from a three-sensor multipoint optical fibre ethanol concentration sensor system using artificial neural network pattern recognition. Meas. Sci. Technol. 15(8), 1560–1567 (2004)CrossRefADSGoogle Scholar
  14. 14.
    Girei, S., Shabaneh, A.: Tapered multimode fiber sensor for ethanol sensing application. In: IEEE 4th International conference on photonics. Malecca, Malysia., p. 275–277 (2013)Google Scholar
  15. 15.
    Song, Y., Lee, H., Ko, J., Ryu, J.: Preparation and characterization of surfactant-exfoliated graphene. Bull. Korean Chem. 35(7), 2009–2012 (2014)CrossRefGoogle Scholar
  16. 16.
    Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R.D., Stankovich, S., Jung, I., Field, D.A., Ventrice, C.A., et al.: Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47(1), 145–152 (2009)CrossRefGoogle Scholar
  17. 17.
    Gurunathan, S., Han, J.W., Eppakayala, V., Kim, J.-H.: Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells. Colloids Surf. B, Biointerfaces 105, 58–66 (2013)CrossRefGoogle Scholar
  18. 18.
    Marlinda, A.R., Huang, N.M., Muhamad, M.R., An’amt, M.N., Chang, B.Y.S., Yusoff, N., Harrison, I., Lim, H.N., Chia, C.H., Kumar, S.V.: Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites. Mater. Lett. 80, 9–12 (2012)CrossRefGoogle Scholar
  19. 19.
    Villatoro, J., Monzón-Hernández, D., Luna-Moreno, D.: In-line optical fiber sensors based on cladded multimode tapered fibers. Appl. Opt. 43(32), 5933–5938 (2004)CrossRefADSGoogle Scholar
  20. 20.
    Wang, C., Zhang, L., Guo, Z., Xu, J., Wang, H., Zhai, K., Zhuo, X.: A novel hydrazine electrochemical sensor based on the high specific surface area graphene. Microchim. Acta 169(1–2), 1–6 (2010)CrossRefGoogle Scholar
  21. 21.
    Shen, Y., Lua, A.C.: A facile method for the large-scale continuous synthesis of graphene sheets using a novel catalyst. Sci. Rep. 3, 3037 (2013)ADSGoogle Scholar
  22. 22.
    Gautam, M., Jayatissa, A.H.: Detection of organic vapors by graphene films functionalized with metallic nanoparticles. J. Appl. Phys. 112(11), 114326 (2012)CrossRefADSGoogle Scholar
  23. 23.
    Langford, V.S., Mckinley, A.J., Quickenden, T.I.: Temperature dependence of the visible-near-infrared absorption spectrum of liquid water. J. Phys. Chem. A. 105, 8916–8921 (2001)CrossRefGoogle Scholar
  24. 24.
    Paredes, J.I., Villar-Rodil, S., Martínez-Alonso, A., Tascón, J.M.D.: Graphene oxide dispersions in organic solvents. Langmuir 24(19), 10560–10564 (2008)CrossRefGoogle Scholar
  25. 25.
    Some, S., Xu, Y., Kim, Y., Yoon, Y., Qin, H., Kulkarni, A., Kim, T., Lee, H.: Highly sensitive and selective gas sensor using hydrophilic and hydrophobic graphenes. Sci. Rep. 3, 1868 (2013)ADSGoogle Scholar
  26. 26.
    Aziz, A., Lim, H.N., Girei, S.H., Yaacob, M.H., Mahdi, M.A., Huang, N.M., Pandikumar, A.: Silver/graphene nanocomposite-modified optical fiber sensor platform for ethanol detection in water medium. Sens. Actuators B: Chem. 206, 119–125 (2015)CrossRefGoogle Scholar
  27. 27.
    Khun Khun, K., Mahajan, A., Bedi, R.K.: SnO thick films for room temperature gas sensing applications. J. Appl. Phys. 106(12), 124509 (2009)CrossRefADSGoogle Scholar
  28. 28.
    Chang, Y., Yao, Y., Wang, B., Luo, H., Li, T., Zhi, L.: Reduced graphene oxide mediated SnO2 nanocrystals for enhanced gas-sensing properties. J. Mater. Sci. Technol. 29(2), 157–160 (2013)CrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2015

Authors and Affiliations

  • Saad H. Girei
    • 1
    Email author
  • Atafat A. Shabaneh
    • 1
  • Hong Ngee-Lim
    • 2
  • Mohd N. Hamidon
    • 3
  • Mohd A. Mahdi
    • 1
  • Mohd H. Yaacob
    • 1
  1. 1.Wireless and Photonics Network Research CentreUniversiti Putra MalaysiaUPM SerdangMalaysia
  2. 2.Department of Chemistry, Faculty of ScienceUniversiti Putra MalaysiaUPM SerdangMalaysia
  3. 3.Institute of Advance TechnologyUniversiti Putra MalaysiaUPM SerdangMalaysia

Personalised recommendations