Optical Review

, Volume 22, Issue 1, pp 19–24 | Cite as

Compact wide-field-of-view imager with a designed disordered medium

Regular Paper

Abstract

Disordered media have been exploited for realizing compact lensless imagers and spectroscopes. However, random scattering causes significant loss of the light energy acquirable by a sensor. Here, we present a compact, wide-field-of-view (wide-FOV) imager in which the usable light energy is increased using a designed disordered medium. The density of scattering air holes in a glass is spatially distributed so as to achieve an effective graded index, which guides light from a wide-FOV toward a sensor. Based on numerical experiments, we demonstrated brighter wide-FOV imaging than an imager using a conventional random medium.

Keywords

Computational imaging Wide field-of-view Disordered medium Lensless imaging 

References

  1. 1.
    J.W. Goodman, Introduction to fourier optics (McGraw-Hill, New York, 1996)Google Scholar
  2. 2.
    D.J. Brady, N. Hagen, Opt. Express 17, 2026 (2009)Google Scholar
  3. 3.
    T. Nakamura, R. Horisaki, J. Tanida, Opt. Express 20, 27482 (2012)CrossRefADSGoogle Scholar
  4. 4.
    I.M. Vellekoop, A. Lagendijk, A.P. Mosk, Nat. Photonics 4, 320 (2010)CrossRefGoogle Scholar
  5. 5.
    R. Fergus, A. Torralba, W.T. Freeman, MIT CSAIL Tech. Rep. 1 (2006)Google Scholar
  6. 6.
    P. R. Gill, D. G. Stork, Proc. Imaging Appl. Optics, p. CW4C.3 (2013)Google Scholar
  7. 7.
    S.M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, S. Gigan, Phys. Rev. Lett. 104, 100601 (2010)CrossRefADSGoogle Scholar
  8. 8.
    Y. Choi, T.D. Yang, C. Fang-Yen, P. Kang, K.J. Lee, R.R. Dasari, M.S. Feld, W. Choi, Phys. Rev. Lett. 107, 023902 (2011)CrossRefADSGoogle Scholar
  9. 9.
    P. Potuluri, M. Xu, D.J. Brady, Opt. Express 11, 2134 (2003)CrossRefADSGoogle Scholar
  10. 10.
    Y. Choi, C. Yoon, M. Kim, T.D. Yang, C. Fang-Yen, R.R. Dasari, K.J. Lee, W. Choi, Phys. Rev. Lett. 109, 203901 (2012)CrossRefADSGoogle Scholar
  11. 11.
    Z. Xu, Z. Wang, M.E. Sullivan, D.J. Brady, S.H. Foulger, A. Adibi, Opt. Express 11, 2126 (2003)CrossRefADSGoogle Scholar
  12. 12.
    B. Redding, S.F. Liew, R. Sarma, H. Cao, Nat. Photonics 7, 746 (2013)CrossRefADSGoogle Scholar
  13. 13.
    D.L. Donoho, IEEE Trans. Inf. Theory 52, 1289 (2006)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, I. Carron, Sci. Rep. 4, 5552 (2014)CrossRefADSGoogle Scholar
  15. 15.
    M. Wang, N. Pan, Mat. Sci. Eng. R 63, 1 (2008)CrossRefGoogle Scholar
  16. 16.
    B. Vasić, R. Gajić, J. Appl. Phys. 110, 053103 (2011)CrossRefADSGoogle Scholar
  17. 17.
    B.E.A. Saleh, M.C. Teich, Fundamentals of photonics (Wiley, New York, 1991)CrossRefGoogle Scholar
  18. 18.
    K.S. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966)CrossRefADSMATHGoogle Scholar
  19. 19.
    A. Levin, R. Fergus, F. Durand, W.T. Freeman, ACM Trans. Graph. 26, 70 (2007)CrossRefGoogle Scholar
  20. 20.
    W.H. Richardson, J. Opt. Soc. Am. 62, 55 (1972)CrossRefADSGoogle Scholar

Copyright information

© The Optical Society of Japan 2015

Authors and Affiliations

  • Tomoya Nakamura
    • 1
    • 2
  • Ryoichi Horisaki
    • 1
  • Jun Tanida
    • 1
  1. 1.Department of Information and Physical Sciences, Graduate School of Information Science and TechnologyOsaka UniversitySuitaJapan
  2. 2.Research Fellow of the Japan Society for the Promotion of ScienceTokyoJapan

Personalised recommendations