Optical Review

, Volume 22, Issue 2, pp 316–321 | Cite as

Nanoscale energy-route selector consisting of multiple photo-switchable fluorescence-resonance-energy-transfer structures on DNA

  • Ryo Fujii
  • Takahiro Nishimura
  • Yusuke Ogura
  • Jun Tanida
Special Section: Regular Paper Biomedical Imaging and Sensing Conference (BISC’14), Yokohama, Japan
Part of the following topical collections:
  1. Biomedical Imaging and Sensing Conference (BISC’14), Yokohama, Japan


We report on a nanoscale energy-route selector consisting of multiple fluorescence resonance energy transfer (FRET) structures switched by external signaling with multiple wavelengths of light. In each FRET structure, a specific activator molecule is incorporated to a FRET pair of a donor and an acceptor to control the activation of the acceptor. Owing to this configuration, the FRET structures are switched independently, and an energy route is selected. Two photo-switchable FRET structures, one consists of Alexa Fluor 568 (donor), Cy5 (acceptor), and Alexa Fluor 405 (activator), and the other consists of Alexa Fluor 568 (donor), Cy5.5 (acceptor), and Cy3 (activator), were constructed using DNA strands modified with fluorescence molecules. Switching rates for the individual FRET structures were measured as 64 and 49 %, respectively. An energy-route selector was then assembled with the FRET structures which share a single donor. Experimental results demonstrate that the energy route can be changed repeatedly by activation control using three wavelengths of light.


FRET Route Selector Activation DNA 



This work was partially supported by a Grant-in-aid for Scientific Research on Innovative Areas “Nanomedicine Molecular Science” (No. 2306) from Ministry of Education, Culture, Sports, Science, and Technology of Japan, and by a Grant-in-aid for JSPS Fellows (Project No. 25.6027) from the Japan Society for the Promotion of Science (JSPS).


  1. 1.
    M. Naruse (ed.), Nanophotonic Information Physics (Springer, Berlin, 2014)Google Scholar
  2. 2.
    N. Tate, W. Nomura, T. Yatsui, M. Naruse, M. Ohtsu, Opt. Express 16, 607 (2008)CrossRefADSGoogle Scholar
  3. 3.
    M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, M. Hara, Langmuir 29, 7557 (2013)CrossRefGoogle Scholar
  4. 4.
    F. Eftekhari, D.E. Gómez, T.J. Davis, Opt. Lett. 39, 2994 (2014)Google Scholar
  5. 5.
    E.A. Jares-Erijman, T.M. Jovin, Nat. Biotechnol. 21, 1387 (2003)CrossRefGoogle Scholar
  6. 6.
    Y. Arai, T. Nagai, Microscopy 62, 419 (2013)CrossRefGoogle Scholar
  7. 7.
    M. Heilemann, P. Tinnefeld, G.S. Mosteiro, M.G. Parajo, N.F.V. Hulst, M. Sauer, J. Am. Chem. Soc. 126, 6514 (2004)CrossRefGoogle Scholar
  8. 8.
    C.M. Spillmann, S. Buckhout-White, E. Oh, E.R. Goldman, M.G. Ancona, I.L. Medintz, Chem. Commun. 50, 7246 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Vyawahare, S. Eyal, K.D. Mathews, S.R. Quake, Nano Lett. 4, 1035 (2004)CrossRefADSGoogle Scholar
  10. 10.
    H. Liu, Y. Zhou, Y. Yang, W. Wang, L. Qu, C. Chen, D. Liu, D. Zhang, D. Zhu, J. Phys. Chem. B 112, 6893 (2008)CrossRefGoogle Scholar
  11. 11.
    J. Vogelsang, T. Cordes, P. Tinnefeld, Photochem. Photobiol. Sci. 8, 486 (2009)CrossRefGoogle Scholar
  12. 12.
    J. Pang, A.R. Lebeck, C. Dwyer, J. Parallel Distrib. Comput. 74, 2470 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Li, H. Zheng, Y. Li, S. Wang, Z. Wu, P. Liu, Z. Gao, H. Liu, D. Zhu, J. Org. Chem. 72, 2878 (2007)CrossRefGoogle Scholar
  14. 14.
    T. Nishimura, Y. Ogura, J. Tanida, Appl. Phys. Lett. 101, 233703 (2012)CrossRefADSGoogle Scholar
  15. 15.
    C. Pistol, C. Dwyer, A.R. Lebeck, IEEE Micro 28, 7 (2008)CrossRefGoogle Scholar
  16. 16.
    N.C. Seeman, Annu. Rev. Biochem. 79, 65 (2010)CrossRefGoogle Scholar
  17. 17.
    Y.N. Teo, E.T. Kool, Chem. Rev. 112, 4221 (2012)CrossRefGoogle Scholar
  18. 18.
    I. Stein, C. Steinhauer, P. Tinnefeld, J. Am. Chem. Soc. 133, 4193 (2011)CrossRefGoogle Scholar
  19. 19.
    S. Uphoff, S.J. Holden, L.L. Reste, J. Periz, S. van de Linde, M. Heilemann, A.N. Kapanidis, Nat. Methods 7, 831 (2010)CrossRefGoogle Scholar
  20. 20.
    T. Nishimura, Y. Ogura, J. Tanida, Appl. Phys. Express 6, 015201 (2013)CrossRefADSGoogle Scholar
  21. 21.
    G.T. Dempsey, M. Bates, W.E. Kowtoniuk, D.R. Liu, R.Y. Tsien, X. Zhuang, J. Am. Chem. Soc. 131, 18192 (2009)CrossRefGoogle Scholar
  22. 22.
    M. Bates, B. Huang, G.T. Dempsey, X. Zhuang, Science 317, 1749 (2007)CrossRefADSGoogle Scholar

Copyright information

© The Optical Society of Japan 2015

Authors and Affiliations

  • Ryo Fujii
    • 1
  • Takahiro Nishimura
    • 1
  • Yusuke Ogura
    • 1
  • Jun Tanida
    • 1
  1. 1.Graduate School of Information Science and TechnologyOsaka UniversitySuitaJapan

Personalised recommendations