Advertisement

Optical Review

, Volume 22, Issue 2, pp 224–231 | Cite as

Principal direction-based Hough transform for line detection

  • Yao Zhao
  • Haibin Pan
  • Changping Du
  • Yao Zheng
Regular Paper

Abstract

A robust and fast line detection method based on Hough transform (HT) is proposed in this paper. Edge pixels are extracted based on the summation and ratio of principal curvatures. Probabilistic sampling on the edge pixels is applied to reduce the count of voting. Then a one-to-one voting strategy is applied by taking advantages of the information of principal direction. The principal direction is also conducive for the successive accurate line segment extraction. The experiments demonstrate that the proposed method shows better locating accuracy and computation efficiency compared with several significant variations of HT.

Keywords

Line detection Hough transform Principal direction Principal curvature Line segment extraction 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 61008048, the Open Fund of Joint Laboratory of Flight Vehicle Ocean-based Measurement and Control under Grant No. FOM2013OF001 and the Fundamental Research Funds for the Central Universities of China under Grand No. 2014FZA4029.

References

  1. 1.
    G. Yammine, E. Wige, F. Simmet, D. Niederkorn, A. Kaup, IEEE International Conference on Vehicular Electronics and Safety, 24–27 July 2012Google Scholar
  2. 2.
    C. Li, Y. Zheng, Y. Yuan, Y. Yang, China Satellite Navigation Conference (CSNC), ed. by J. Sun, J. Liu, Y. Yang, S. Fan. Lecture notes in electrical engineering, vol. 160 (Springer, Heidelberg, 2012)Google Scholar
  3. 3.
    D. Farin, J. Han, P. H. de With, IEEE International Conference on Multimedia & Expo (ICME), 6–8 July 2005Google Scholar
  4. 4.
    F.C. Tien, C.H. Yeh, K.H. Hsieh, Int. J. Prod. Res. 42, 2477 (2004)CrossRefGoogle Scholar
  5. 5.
    C.L. Liu, S. Jaeger, M. Nakagawa, Pattern Anal. Mach. Intell. 26, 198 (2004)CrossRefGoogle Scholar
  6. 6.
    G. Q. Lu, X. Hong-guo, Y. B. Li, IEEE International Conference on Vehicular Electronics and Safety, 14–16 Oct 2005Google Scholar
  7. 7.
    B. Hou, F. Liu, L. Jiao, Sci. China Ser. E Technol. Sci. 46, 141 (2003)CrossRefMATHGoogle Scholar
  8. 8.
    R.G. Von Gioi, J. Jakubowicz, J.M. Morel, G. Randall, Pattern Anal. Mach. Intell. 32, 722 (2010)CrossRefGoogle Scholar
  9. 9.
    C. Akinlar, C. Topal, Pattern Recogn. Lett. 32, 1633 (2011)CrossRefGoogle Scholar
  10. 10.
    K. Yang, S. Sam Ge, H. He, Comput. Vis. Image Underst. 115, 1207 (2011)CrossRefGoogle Scholar
  11. 11.
    P. V. Hough, U.S. Patent No. 3,069,654, 1962Google Scholar
  12. 12.
    R.O. Duda, P.E. Hart, Commun. ACM 15, 11 (1972)CrossRefMATHGoogle Scholar
  13. 13.
    F. O’Gorman, M.B. Clowes, IEEE Trans. Comput. 100, 449 (1976)CrossRefGoogle Scholar
  14. 14.
    N. Kiryati, Y. Eldar, A.M. Bruckstein, Pattern Recogn. 24, 303 (1991)CrossRefMathSciNetGoogle Scholar
  15. 15.
    J. Matas, C. Galambos, J. Kittler, Comput. Vis. Image Underst. 78, 119 (2000)CrossRefGoogle Scholar
  16. 16.
    L. Xu, E. Oja, P. Kultanen, Pattern Recogn. Lett. 11, 331 (1990)CrossRefMATHGoogle Scholar
  17. 17.
    L.A. Fernandes, M.M. Oliveira, Pattern Recogn. 41, 299 (2008)CrossRefMATHGoogle Scholar
  18. 18.
    R.M. Haralick, Comput. Vis. Gr. Image Process. 22, 28 (1983)CrossRefGoogle Scholar
  19. 19.
    C. Steger, Pattern Anal. Mach. Intell. 20, 113 (1998)CrossRefGoogle Scholar
  20. 20.
    T. Lindeberg, Int. J. Comput. Vis. 30, 117 (1998)CrossRefGoogle Scholar
  21. 21.
    M. E. Martínez-Pérez, A. D. Hughes, A. V. Stanton, S. A. Thom, A. A. Bharath, K. H. Parker, Medical Image Computing and Computer-Assisted Intervention. (Springer, Heidelberg, 1999), pp. 90–97Google Scholar
  22. 22.
    H. Deng, W. Zhang, E. Mortensen, T. Dietterich, L. Shapiro, IEEE Conference on Computer Vision and Pattern Recognition, 17–22 June 2007Google Scholar

Copyright information

© The Optical Society of Japan 2015

Authors and Affiliations

  • Yao Zhao
    • 1
    • 2
  • Haibin Pan
    • 1
    • 2
    • 3
  • Changping Du
    • 1
  • Yao Zheng
    • 1
    • 2
  1. 1.Institute of Aerospace Information TechnologyZhejiang UniversityZhejiangPeople’s Republic of China
  2. 2.Joint Laboratory of Flight Vehicle Ocean-based Measurement and ControlZhejiang UniversityZhejiangPeople’s Republic of China
  3. 3.Department of Electronic and Information EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong

Personalised recommendations