Optical Review

, Volume 22, Issue 1, pp 137–142 | Cite as

Plasmonic optical trapping of soft nanomaterials such as polymer chains and DNA: micro-patterning formation

  • Tatsuya ShojiEmail author
  • Yasuyuki TsuboiEmail author
Special Section: Invited Review Paper 1st Optical Manipulation Conference (OMC'14), Yokohama, Japan
Part of the following topical collections:
  1. 1st Optical Manipulation Conference (OMC'14), Yokohama, Japan


Localized surface plasmons exert a strong radiation force on nanoparticles in the vicinity of noble metal nanostructures, resulting in optical trapping. Such plasmon-based optical trapping is one of the hot topics in the field of nanophotonics and can be applied to molecular manipulation techniques. In this review paper, we describe the plasmon-based optical trapping of polymer chains and DNA. In addition, we describe the future outlook for this trapping method.


Optical tweezers Optical trapping Localized surface plasmons Thermoresponsive polymer chains DNA Fluorescence microspectroscopy 


  1. 1.
    A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986)CrossRefADSGoogle Scholar
  2. 2.
    K. Svoboda, S.M. Block, Opt. Lett. 19, 930 (1994)CrossRefADSGoogle Scholar
  3. 3.
    A. Ashkin, Phys. Rev. Lett. 24, 156 (1970)CrossRefADSGoogle Scholar
  4. 4.
    A. Ashkin, J.M. Dziedzic, Science 235, 1517 (1987)CrossRefADSGoogle Scholar
  5. 5.
    A. Ashkin, J.M. Dziedzic, T. Yamane, Nature 330, 769 (1987)CrossRefADSGoogle Scholar
  6. 6.
    F. Kitagawa, N. Kitamura, Bull. Chem. Soc. Jpn 75, 705 (2002)CrossRefGoogle Scholar
  7. 7.
    A.N. Grigorenko, N.W. Roberts, M.R. Dickinson, Y. Zhang, Nat. Photon. 2, 365 (2008)CrossRefADSGoogle Scholar
  8. 8.
    F. Nagasawa, M. Takase, H. Nabika, K. Murakoshi, Chem. Commun. 47, 4514 (2011)CrossRefGoogle Scholar
  9. 9.
    J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Nat. Mater. 7, 442 (2008)CrossRefADSGoogle Scholar
  10. 10.
    K. Ueno, H. Misawa, J. Photochem. Photobiol. C 15, 31 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Toshimitsu, Y. Matsumura, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, A. Nobuhiro, Y. Mizumoto, H. Ishihara, Y. Tsuboi, J. Phys. Chem. C 116, 14610 (2012)CrossRefGoogle Scholar
  12. 12.
    T. Shoji, M. Shibata, N. Kitamura, F. Nagasawa, M. Takase, K. Murakoshi, A. Nobuhiro, Y. Mizumoto, H. Ishihara, Y. Tsuboi, J. Phys. Chem. C 117, 2500 (2013)CrossRefGoogle Scholar
  13. 13.
    K. Wang, E. Schonbrun, P. Steinvurzel, K.B. Crozier, Nat. Commun. 2, 469 (2011)CrossRefADSGoogle Scholar
  14. 14.
    B.J. Roxworthy, A.M. Bhuiya, S.P. Vanka, K.C. Toussaint, Nat. Commun. 5, 1 (2014)Google Scholar
  15. 15.
    Y. Tanaka, S. Kaneda, K. Sasaki, Nano Lett. 13, 2146 (2013)CrossRefADSGoogle Scholar
  16. 16.
    S.R. de Groot, P. Mazur, Non-equilibrium thermodynamics (North-Holland, Amsterdam, 1962)Google Scholar
  17. 17.
    M. Braun, F. Cichos, ACS Nano 7, 11200 (2013)CrossRefGoogle Scholar
  18. 18.
    R. Piazza, Soft Matter 4, 1740 (2008)CrossRefADSGoogle Scholar
  19. 19.
    S. Duhr, D. Braun, Proc. Natl. Acad. Sci. 103, 19678 (2006)CrossRefADSGoogle Scholar
  20. 20.
    Y. Maeda, A. Buguin, A. Libchaber, Phys. Rev. Lett. 107, 038301 (2011)CrossRefADSGoogle Scholar
  21. 21.
    T. Shoji, Y. Mizumoto, H. Ishihara, N. Kitamura, M. Takase, K. Murakoshi, Y. Tsuboi, Jpn. J. Appl. Phys. 51, 092001 (2012)CrossRefADSGoogle Scholar
  22. 22.
    J.C. Hulteen, J. Vac. Sci. Technol. A Vacuum Surfaces Film 13, 1553 (1995)CrossRefADSGoogle Scholar
  23. 23.
    F. Nagasawa, M. Takase, K. Murakoshi, J. Phys. Chem. Lett. 5, 14 (2014)CrossRefGoogle Scholar
  24. 24.
    Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, H. Ishihara, J. Phys. Chem. Lett. 1, 2327 (2010)CrossRefGoogle Scholar
  25. 25.
    T. Shoji, J. Saitoh, N. Kitamura, F. Nagasawa, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, H. Ishihara, Y. Tsuboi, J. Am. Chem. Soc. 135, 6643 (2013)CrossRefGoogle Scholar
  26. 26.
    M. Heskins, J.E. Guillet, J. Macromol. Sci. Part A Chem. 2, 1441 (1968)CrossRefGoogle Scholar
  27. 27.
    S. Ito, T. Sugiyama, N. Toitani, G. Katayama, H. Miyasaka, J. Phys. Chem. B 111, 2365 (2007)CrossRefGoogle Scholar
  28. 28.
    H. Yamauchi, S. Ito, K. Yoshida, T. Itoh, Y. Tsuboi, N. Kitamura, H. Miyasaka, J. Phys. Chem. C 117, 8388 (2013)CrossRefGoogle Scholar
  29. 29.
    R. Kita, S. Wiegand, Macromolecules 38, 4554 (2005)CrossRefADSGoogle Scholar
  30. 30.
    M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F.J. García De Abajo, R. Quidant, Nano Lett. 9, 3387 (2009)CrossRefADSGoogle Scholar
  31. 31.
    Y. Pang, R. Gordon, Nano Lett. 12, 402 (2012)CrossRefADSGoogle Scholar
  32. 32.
    A.P.F. Turner, Chem. Soc. Rev. 42, 3184 (2013)CrossRefGoogle Scholar
  33. 33.
    M.L. Juan, R. Gordon, Y. Pang, F. Eftekhari, R. Quidant, Nat. Phys. 5, 915 (2009)CrossRefGoogle Scholar
  34. 34.
    C. Chen, M.L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, R. Quidant, Nano Lett. 12, 125 (2012)CrossRefADSGoogle Scholar
  35. 35.
    B.J. Roxworthy, K.C. Toussaint, Sci. Rep. 2, 660 (2012)CrossRefADSGoogle Scholar

Copyright information

© The Optical Society of Japan 2015

Authors and Affiliations

  1. 1.Division of Molecular Materials Science, Graduate School of ScienceOsaka City UniversityOsakaJapan

Personalised recommendations