Optical Review

, Volume 21, Issue 3, pp 292–297 | Cite as

Detection method for small and dim targets from a time series of images observed by a space-based optical detection system

  • HaiBin Pan
  • GuangHua Song
  • LiJun Xie
  • Yao Zhao
Regular Papers


To revisit cataloged space targets, a space-based optical detection system normally observes space targets continuously in a target tracking mode. In the time series of images produced by continuous observation, there are not only the target but also complicated background clutter (a mass of stars) and noises. The existing method only can detect the target with an signal-to-noise ratio (SNR) greater than 6 from these images. This paper presents a detection method for the target with an SNR less than 6. The proposed method consists of an SNR enhancement algorithm and an adaptive background and noise suppression algorithm. Simulation and analytical results show the proposed method detects the target submerged in noise and background clutter when SNR is equal to 3 and the detection probability and the false alarm probability both reach very high performance. This proposed method can help solve the problem of revisiting some weak cataloged space targets.


space optical detection sensor time series images target detection cataloged space targets target tracking mode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    J. Li, W. An, and Y. Y. Zhou: Aerosp. Sci. Technol. 21 (2012) 41.CrossRefGoogle Scholar
  2. 2).
    J. Sharma, G. H. Stokes, C. V. Braun, G. Zollinger, and A. J. Wiseman: Lincoln Lab. J. 13 (2002) 309.Google Scholar
  3. 3).
    K. K. Zhang, F. Zhou, and D. Y. Fu: Spacecr. Recovery Remote Sens. 26 (2005) 10.Google Scholar
  4. 4).
    H. F. Peng, J. Chen, and B. Zhang: Opto-Electron. Eng. 34 (2007) 1.Google Scholar
  5. 5).
    D. C. Harrison and J. C. Chow: Johns Hopkins APL Tech. Dig. 17 (1996) 226.Google Scholar
  6. 6).
    A. Delga, M. Carras, V. Trinite, V. Gueriaux, L. Doyennette, A. Nedelcu, H. Schneider, and V. Berger: Phys. Rev. B 85 (2012) 245414.ADSCrossRefGoogle Scholar
  7. 7).
    L. C. Peter: IEEE Trans. Acoust. Speech Signal Process. 36 (1988) 775.CrossRefMATHGoogle Scholar
  8. 8).
    G. H. Stokes, C. V. Braun, R. Sridharan, D. Harrison, and J. Sharma: Lincoln Lab. J. 11 (1998) 205.Google Scholar
  9. 9).
    J. Li, Y. Gao, W. An, and Y. Y. Zhou: J. Syst. Simulation 20 (2008) 3951.Google Scholar
  10. 10).
    Y. Tang, M. P. Wu, and X. F. Fu: Sci. China Technol. Sci. 55 (2012) 1749.CrossRefGoogle Scholar
  11. 11).
    L. C. Peter: Lincoln Lab. Tech. Rep. 846 (1989) 3.Google Scholar
  12. 12).
    J. Huang, W. D. Hu, and Q. Xin: Res. Astron. Astrophys. 12 (2012) 1402.ADSCrossRefGoogle Scholar
  13. 13).
    R. D. Launius, E. M. Conway, and A. K. Johnston: Proc. IEEE 100 (2012) 1785.CrossRefGoogle Scholar
  14. 14).
    J. Li, W. An, and Y. Y. Zhou: Chin. J. Space Sci. 29 (2009) 326.Google Scholar
  15. 15).
    J. H. Yu, Z. L. Su, and Q. Tan: Chin. J. Quantum Electron. 23 (2006) 772.Google Scholar
  16. 16).
    J. Chen, W. Zhang, M. Y. Cong, and H. B. Pan: Opt. Technol. 36 (2010) 439.Google Scholar
  17. 17).
    J. H. Yuan, J. R. Zhang, and S. A. He: Opto-Electron. Eng. 26 (1999) 1.Google Scholar
  18. 18).
    H. B. Pan, W. Zhang, and M. Y. Cong: Opt. Precis. Eng. 17 (2009) 666.Google Scholar

Copyright information

© The Optical Society of Japan 2014

Authors and Affiliations

  • HaiBin Pan
    • 1
    • 2
    • 3
  • GuangHua Song
    • 1
    • 2
  • LiJun Xie
    • 1
    • 2
  • Yao Zhao
    • 2
  1. 1.Joint Laboratory of Flight Vehicle Ocean-based Measurement and ControlZhejiang UniversityHangzhouChina
  2. 2.Institute of Aerospace Information TechnologyZhejiang UniversityHangzhouChina
  3. 3.Department of Electronic and Information EngineeringThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong

Personalised recommendations