Advertisement

Optical Review

, Volume 20, Issue 2, pp 236–240 | Cite as

Light absorption measurement of a plasmonic photocatalyst in the circular plane waveguide of a photocatalytic dual light source spinning disk reactor

  • Hung Ji Huang
  • Kuo-Cheng Huang
  • Din Ping Tsai
Regular Paper

Abstract

This study numerically investigates the light absorption of a plasmonic photocatalyst in the circular plane waveguide of a photocatalytic spinning disk reactor. The degradation of methyl orange (MO) in water with a dual light source spinning disk reactor (DL-SDR) and embedded diffusion coupler demonstrates the plasmonic photocatalytic reaction. When light propagates in the circular plane disk (CPD) waveguide of a DL-SDR, it gradually loses energy because of the absorption of the photocatalyst. This absorption boosts the processing efficiency of the plasmonic photocatalytic reaction. A real case by a diffusion coupler was used to present the plasmonic photocatalytic reaction. This study presents the numerical analysis of a secondary optical lens (SOL) coupler and the numerical evaluation of light absorption of the plasmonic photocatalyst in a DL-SDR. An elliptical reflector collects the light emitted from the circular ring edge of the SOL and CPD. This study presents an evaluation method that simulates the light absorption of a photocatalyst coating on the CPD of a DL-SDR.

Keywords

plane circular disk waveguide photocatalyst photocatalytic spinning disk reactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    A. Fujishima and K. Honda: Nature 238 (1972) 37.ADSCrossRefGoogle Scholar
  2. 2).
    H. -P. Chiang, P. T. Leung, and W. S. Tse: J. Chem. Phys. 108 (1998) 2659.ADSCrossRefGoogle Scholar
  3. 3).
    H. J. Huang, C. P. Yu, H. C. Chang, K. P. Chiu, R. S. Liu, and D. P. Tsai: Opt. Express 15 (2007) 7132.ADSCrossRefGoogle Scholar
  4. 4).
    M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemannt: Chem. Rev. 95 (1995) 69.CrossRefGoogle Scholar
  5. 5).
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga: Science 293 (2001) 269.CrossRefGoogle Scholar
  6. 6).
    A. L. Linsebigler, G. Lu, and J. T. Yates, Jr.: Chem. Rev. 95 (1995) 735.CrossRefGoogle Scholar
  7. 7).
    X. Z. Li and F. B. Li: Environ. Sci. Technol. 35 (2001) 2381.CrossRefGoogle Scholar
  8. 8).
    I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi: J. Mol. Catal. A 161 (2000) 205.CrossRefGoogle Scholar
  9. 9).
    H. J. Huang, C.-T. Lin, J.-J. Yang, N.-L. Wu, J. C.-S. Wu, and D. P. Tsai: Proc. 11th Int. Conf. Near-Field Optics (NFO-11), 2010, p. 64.Google Scholar
  10. 10).
    J. Wu, T.-H. Wu, T. Chu, H. Huang, and D. Tsai: Top. Catal. 47 (2008) 131.CrossRefGoogle Scholar
  11. 11).
    H. C. Yatmaz, C. Wallis, and C. R. Howarth: Chemosphere 42 (2001) 397.CrossRefGoogle Scholar
  12. 12).
    K. -R. Kim, J.-H. Kim, D. F. Farson, H. W. Choi, and K.-H. Kim: Jpn. J. Appl. Phys. 47 (2008) 6978.ADSCrossRefGoogle Scholar
  13. 13).
    S. Nisar, M. A. Sheikh, L. Li, and S. Safdar: Opt. Laser Technol. 41 (2009) 318.ADSCrossRefGoogle Scholar
  14. 14).
    J. Jiang, S. To, W. B. Lee, and B. Cheung: Optik 121 (2010) 1761.ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2013

Authors and Affiliations

  • Hung Ji Huang
    • 1
  • Kuo-Cheng Huang
    • 1
  • Din Ping Tsai
    • 2
  1. 1.Instrument Technology Research CenterNational Applied Research LaboratoriesHsinchuTaiwan
  2. 2.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations