Optical Review

, Volume 20, Issue 2, pp 236–240 | Cite as

Light absorption measurement of a plasmonic photocatalyst in the circular plane waveguide of a photocatalytic dual light source spinning disk reactor

  • Hung Ji Huang
  • Kuo-Cheng Huang
  • Din Ping Tsai
Regular Paper


This study numerically investigates the light absorption of a plasmonic photocatalyst in the circular plane waveguide of a photocatalytic spinning disk reactor. The degradation of methyl orange (MO) in water with a dual light source spinning disk reactor (DL-SDR) and embedded diffusion coupler demonstrates the plasmonic photocatalytic reaction. When light propagates in the circular plane disk (CPD) waveguide of a DL-SDR, it gradually loses energy because of the absorption of the photocatalyst. This absorption boosts the processing efficiency of the plasmonic photocatalytic reaction. A real case by a diffusion coupler was used to present the plasmonic photocatalytic reaction. This study presents the numerical analysis of a secondary optical lens (SOL) coupler and the numerical evaluation of light absorption of the plasmonic photocatalyst in a DL-SDR. An elliptical reflector collects the light emitted from the circular ring edge of the SOL and CPD. This study presents an evaluation method that simulates the light absorption of a photocatalyst coating on the CPD of a DL-SDR.


plane circular disk waveguide photocatalyst photocatalytic spinning disk reactor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    A. Fujishima and K. Honda: Nature 238 (1972) 37.ADSCrossRefGoogle Scholar
  2. 2).
    H. -P. Chiang, P. T. Leung, and W. S. Tse: J. Chem. Phys. 108 (1998) 2659.ADSCrossRefGoogle Scholar
  3. 3).
    H. J. Huang, C. P. Yu, H. C. Chang, K. P. Chiu, R. S. Liu, and D. P. Tsai: Opt. Express 15 (2007) 7132.ADSCrossRefGoogle Scholar
  4. 4).
    M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemannt: Chem. Rev. 95 (1995) 69.CrossRefGoogle Scholar
  5. 5).
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga: Science 293 (2001) 269.CrossRefGoogle Scholar
  6. 6).
    A. L. Linsebigler, G. Lu, and J. T. Yates, Jr.: Chem. Rev. 95 (1995) 735.CrossRefGoogle Scholar
  7. 7).
    X. Z. Li and F. B. Li: Environ. Sci. Technol. 35 (2001) 2381.CrossRefGoogle Scholar
  8. 8).
    I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi: J. Mol. Catal. A 161 (2000) 205.CrossRefGoogle Scholar
  9. 9).
    H. J. Huang, C.-T. Lin, J.-J. Yang, N.-L. Wu, J. C.-S. Wu, and D. P. Tsai: Proc. 11th Int. Conf. Near-Field Optics (NFO-11), 2010, p. 64.Google Scholar
  10. 10).
    J. Wu, T.-H. Wu, T. Chu, H. Huang, and D. Tsai: Top. Catal. 47 (2008) 131.CrossRefGoogle Scholar
  11. 11).
    H. C. Yatmaz, C. Wallis, and C. R. Howarth: Chemosphere 42 (2001) 397.CrossRefGoogle Scholar
  12. 12).
    K. -R. Kim, J.-H. Kim, D. F. Farson, H. W. Choi, and K.-H. Kim: Jpn. J. Appl. Phys. 47 (2008) 6978.ADSCrossRefGoogle Scholar
  13. 13).
    S. Nisar, M. A. Sheikh, L. Li, and S. Safdar: Opt. Laser Technol. 41 (2009) 318.ADSCrossRefGoogle Scholar
  14. 14).
    J. Jiang, S. To, W. B. Lee, and B. Cheung: Optik 121 (2010) 1761.ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2013

Authors and Affiliations

  • Hung Ji Huang
    • 1
  • Kuo-Cheng Huang
    • 1
  • Din Ping Tsai
    • 2
  1. 1.Instrument Technology Research CenterNational Applied Research LaboratoriesHsinchuTaiwan
  2. 2.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations