Optical Review

, Volume 19, Issue 5, pp 349–354 | Cite as

Combined image similarity index

Regular Papers

Abstract

In the paper the idea of the combined image quality metric based on the structural and feature similarity comparison is discussed. Since most of image quality assessment methods developed during last years require the nonlinear mapping to obtain high correlation with subjective quality scores, there is an important problem of choosing the proper mapping function and its optimal parameters in practical applications. The most common approach is the utilization of the logistic function but its parameters strongly depend on the specific image quality database. To avoid the necessity of such mapping the nonlinear combination of three known image quality metrics is proposed and verified for seven currently available image quality assessment databases in terms of the linear correlation with subjective scores.

Keywords

image quality assessment image similarity structural similarity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Y. J. Kim: Opt. Rev. 17 (2010) 459.CrossRefGoogle Scholar
  2. 2).
    Z. Wang and A. C. Bovik: IEEE Signal Process. Lett. 9 (2002) 81.ADSCrossRefGoogle Scholar
  3. 3).
    Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli: IEEE Trans. Image Process. 13 (2004) 600.ADSCrossRefGoogle Scholar
  4. 4).
    Z. Wang, E. P. Simoncelli, and A. C. Bovik: Proc. 37th IEEE Asilomar Conf. Signals, Systems and Computers 2 (2003) 1398.Google Scholar
  5. 5).
    H. Sheikh, A. Bovik, and G. de Veciana: IEEE Trans. Image Process. 14 (2005) 2117.ADSCrossRefGoogle Scholar
  6. 6).
    A. Shnayderman, A. Gusev, and A. Eskicioglu: IEEE Trans. Image Process. 15 (2006) 422.ADSCrossRefGoogle Scholar
  7. 7).
    M. Narwaria and W. Lin: Proc. 5th Int. Workshop Video Processing and Quality Metrics for Consumer Electronics, 2010.Google Scholar
  8. 8).
    A. Mahmoudi-Aznaveh, A. Mansouri, F. Torkamani-Azar, and M. Eslami: Opt. Rev. 16 (2009) 30.CrossRefGoogle Scholar
  9. 9).
    A. Mansouri, A. Mahmoudi-Aznaveh, F. Torkamani-Azar, and J. Jahanshahi: Opt. Rev. 16 (2009) 49.CrossRefGoogle Scholar
  10. 10).
    L. Zhang, L. Zhang, and X. Mou: Proc. 17th IEEE Int. Conf. Image Processing, 2010, p. 321.Google Scholar
  11. 11).
    L. Zhang, L. Zhang, X. Mou, and D. Zhang: IEEE Trans. Image Process. 20 (2011) 2378.MathSciNetADSCrossRefGoogle Scholar
  12. 12).
    Z. Liu and R. Laganière: Pattern Recognit. Lett. 28 (2007) 166.CrossRefGoogle Scholar
  13. 13).
    Z. Parvez Sazzad, Y. Kawayoke, and Y. Horita: Web [http://mict.eng.u-toyama.ac.jp/mictdb.html].
  14. 14).
    H. Sheikh, M. Sabir, and A. Bovik: IEEE Trans. Image Process. 15 (2006) 3440.ADSCrossRefGoogle Scholar
  15. 15).
    D. Chandler and S. Hemami: IEEE Trans. Image Process. 16 (2007) 2284.MathSciNetADSCrossRefGoogle Scholar
  16. 16).
    A. Ninassi, P. Le Callet, and F. Autrusseau: Proc. SPIE 6057 (2006) 60570G.CrossRefGoogle Scholar
  17. 17).
    U. Engelke, H.-J. Zepernick, and T. Kusuma: Proc. 5th Int. Workshop Video Processing and Quality Metrics for Consumer Electronics, 2010.Google Scholar
  18. 18).
    N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, and F. Battisti: Adv. Mod. Radioelectron. 10 (2009) 3045.Google Scholar
  19. 19).
    E. Larson and D. Chandler: J. Electron. Imaging 19 (2010) 011006.ADSCrossRefGoogle Scholar
  20. 20).
    Y. Han, Y. Cai, Y. Cao, and X. Xu: IEEE Trans. Image Process. 21 (2012) 2309.MathSciNetADSCrossRefGoogle Scholar
  21. 21).
    S.-W. Hsu, Y.-T. Chen, B.-J. Pong, and S.-T. Kuo: Opt. Rev. 18 (2011) 157.CrossRefGoogle Scholar
  22. 22).
    K. Okarma: Lecture Notes in Computer Science (Springer, Heidelberg, 2010) Vol. 6113, p. 539.Google Scholar

Copyright information

© The Optical Society of Japan 2012

Authors and Affiliations

  1. 1.Department of Signal Processing and Multimedia EngineeringWest Pomeranian University of TechnologySzczecinPoland

Personalised recommendations