Optical Review

, Volume 18, Issue 6, pp 458–461 | Cite as

Spectral imaging of neurosurgical target tissues through operation microscope

  • Jukka AntikainenEmail author
  • Mikael von und zu Fraunberg
  • Joni Orava
  • Juha E. Jaaskelainen
  • Markku Hauta-Kasari


It has been noticed that spectral information can be used for analyzing and separating different biological tissues. However, most of the studies for spectral image acquisitions are mainly done in vitro. Usually the main restrictions for in vivo measurements are the size or the weight of the spectral camera. If the camera weights too much, the surgery microscope cannot be stabilized. If the size of the camera is too big, it will disturb the surgeon or even risk the safety of the patient. The main goal of this study was to develop an independent spectral imaging device which can be used for collecting spectral information from the neurosurgeries without any previously described restrictions. Size of the imaging system is small enough not to disturb the surgeon during the surgery. The developed spectral imaging system is used for collecting a spectral database which can be used for the future imaging systems.


spectral imaging neurosurgery tissue separation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material (5 kb)
Supplementary material, approximately 5.33 KB.


  1. 1).
    Cambridge Research & Instrumentation: Technical note: Faqs & principles of operation, varispec liquid crystal tunable filters [].
  2. 2).
    P. Fält, J. Hiltunen, M. Hauta-Kasari, I. Sorri, V. Kalesnykiene, and H. Uusitalo: Extending Diabetic Retinopathy Imaging from Color to Spectra (Springer, Heidelberg, 2009) Lecture Notes in Computer Science, Vol. 5575, p. 149.Google Scholar
  3. 3).
    S. C. Gebhart, R. C. Thompson, and A. Mahadevan-Jansen: Appl. Opt. 46 (2007) 1896.ADSCrossRefGoogle Scholar
  4. 4).
    S. C. Gebhart: Ph. D. thesis, Vanderbilt University (2006).Google Scholar
  5. 5).
    R. Jošth, J. Antikainen, J. Havel, A. Herout, P. Zemčík, and M. Hauta-Kasari: J. Real-Time Image Process. 6 (2011) 1.CrossRefGoogle Scholar
  6. 6).
    Y. Kajimoto, S. I. Miyatake, and T. Kuroiwa: Int. Congr. Ser. 1259 (2004) 33.CrossRefGoogle Scholar
  7. 7).
    J. Kinnunen, J. S. Jurvelin, J. Mkitalo, M. Hauta-Kasari, P. Vahimaa, and S. Saarakkala: J. Biomed. Opt. 15 (2010) 046024.ADSCrossRefGoogle Scholar
  8. 8).
    A. Raabe, J. Beck, R. Gerlach, M. Zimmermann, and V. Seifert: Neurosurgery 52 (2003) 132.Google Scholar
  9. 9).
    S. A. Toms, W. C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen: Neurosurgery 57 (2005) 382.CrossRefGoogle Scholar
  10. 10).
    S. J. Woltman, G. D. Jay, and G. P. Crawford: Nat. Mater. 6 (2007) 929.ADSCrossRefGoogle Scholar
  11. 11).
    G. Wyszecki and W. S. Styles: Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982) 2nd ed.Google Scholar

Copyright information

© The Optical Society of Japan 2011

Authors and Affiliations

  • Jukka Antikainen
    • 2
    Email author
  • Mikael von und zu Fraunberg
    • 1
  • Joni Orava
    • 2
  • Juha E. Jaaskelainen
    • 1
  • Markku Hauta-Kasari
    • 2
  1. 1.Department of NeurosurgeryKuopio University HospitalKuopioFinland
  2. 2.School of ComputingUniversity of Eastern FinlandJoensuuFinland

Personalised recommendations