Optical Review

, Volume 18, Issue 1, pp 132–138 | Cite as

Development of optical fiber-based respiration sensor for noninvasive respiratory monitoring

  • Wook Jae Yoo
  • Kyoung Won Jang
  • Jeong Ki Seo
  • Ji Yeon Heo
  • Jin Soo Moon
  • Jae Hoon Jun
  • Jang-Yeon Park
  • Bongsoo Lee
Regular Papers

Abstract

In this study, two types of nasal-cavity-attached fiber-optic respiration sensors have been fabricated for noninvasive respiratory monitoring. One is a silver halide optical-fiber-based respiration sensor that can measure the variations of infrared radiation generated by the respiratory airflow from a nasal cavity. The other is a thermochromic-pigment-based fiber-optic respiration sensor that can measure the intensity of reflected light which changes owing to color variations of the temperature-sensing film according to the temperature difference between inspiratory and expiratory air. We have demonstrated the similarities of the respiratory signals using the fiber-optic respiration sensors and the temperature transducer of the BIOPAC® system. In addition, we verified that respiratory signals without the deterioration of the MR image can be obtained using the fiber-optic respiration sensors. It is anticipated that the proposed noninvasive fiberoptic respiration sensors will be highly effective for respiratory monitoring of a patient during MRI procedures.

Keywords

fiber-optic sensor plastic optical fiber respiration sensor silver halide optical fiber thermochromic pigment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    A. T. Augousti, F.-X. Maletras, and J. Mason: Opt. Fiber Technol. 11 (2005) 346.CrossRefADSGoogle Scholar
  2. 2).
    F. Baldini, A. Falai, A. R. De Gaudio, D. Landi, A. Lueger, A. Mencaglia, D. Scherr, and W. Trettnak: Sens. Actuators B 90 (2003) 132.CrossRefGoogle Scholar
  3. 3).
    H. Segawa, E. Ohnishi, Y. Arai, and K. Yoshida: Sens. Actuators B 94 (2003) 276.CrossRefGoogle Scholar
  4. 4).
    M. Folke, L. Cernerud, M. Ekström, and B. Hök: Med. Biol. Eng. Comput. 41 (2003) 377.CrossRefGoogle Scholar
  5. 5).
    P. A. Öberg, H. Pettersson, L.-G. Lindberg, and M. Vegfors: Proc. SPIE 2331 (1994) 98.CrossRefGoogle Scholar
  6. 6).
    K. Kang, H. Ruan, Y. Wang, F. J. Arregui, I. R. Matias, and R. O. Claus: Meas. Sci. Technol. 17 (2006) 1207.CrossRefADSGoogle Scholar
  7. 7).
    J. De Jonckheere, M. Jeanne, A. Grillet, S. Weber, P. Chaud, R. Logier, and J. L. Weber: Proc. 29th Int. Conf. IEEE Engineering in Medicine and Biology Society, 2007, p. 3950.Google Scholar
  8. 8).
    K. Krebber, A. Grillet, J. Witt, M. Schukar, D. Kinet, T. Thiel, F. Pirotte, and A. Depré: Proc. 16th Int. Conf. Plastic Optical Fibres, 2007, p. 227.Google Scholar
  9. 9).
    S. K. Lemieux and G. H. Glover: J. Magn. Resonance Imaging 6 (1996) 561.CrossRefGoogle Scholar
  10. 10).
    A. M. Cyna, V. Kulkarni, M. E. Tunstall, J. M. S. Hutchison, and J. R. Mallard: Br. J. Anaesth. 67 (1991) 341.CrossRefGoogle Scholar
  11. 11).
    K. Ashutosh, R. Gilbert, J. H. Auchincloss, J. Erlebacher, and D. Peppi: J. Appl. Physiol. 37 (1974) 964.Google Scholar
  12. 12).
    K. P. Cohen, W. M. Ladd, D. M. Beams, W. S. Sheers, R. G. Radwin, W. J. Tompkins, and J. G. Webster: IEEE Trans. Biomed. Eng. 44 (1997) 555.CrossRefGoogle Scholar
  13. 13).
    W. Cop: Encl. Med. Dev. Instrum. 4 (1988) 2870.Google Scholar
  14. 14).
    A. C. S. Brau, C. T. Wheeler, L. W. Hedlund, and G. A. Johnson: Magn. Resonance Med. 47 (2002) 314.CrossRefGoogle Scholar
  15. 15).
    C. Larsson, L. Davidsson, P. Lundin, G. Gustafsson, and M. Vegfors: Acta Radiol. 40 (1999) 33.Google Scholar
  16. 16).
    R. D. Rempt and C. Ramon: Proc. SPIE 1886 (1993) 181.CrossRefADSGoogle Scholar
  17. 17).
    S.-C. Chung, J.-H. Kwon, B. Lee, J.-H. Yi, H.-J. Kim, and G.-R. Tack: Behav. Res. Methods 40 (2008) 342.CrossRefGoogle Scholar
  18. 18).
    S. Sade and A. Katzir: Magn. Resonance Imaging 19 (2001) 287.CrossRefGoogle Scholar
  19. 19).
    C. Davis, A. Mazzolini, and D. Murphy: Aust. Phys. Eng. Sci. Med. 20 (1997) 214.Google Scholar
  20. 20).
    M. Vegfors, L.-G. Lindberg, H. Pettersson, and P. A. Öberg: Int. J. Clin. Monit. Comput. 11 (1994) 151.CrossRefGoogle Scholar
  21. 21).
    Q. Chen, R. O. Claus, W. B. Spillman, F. J. Arregui, I. R. Matias, and K. L. Cooper: Proc. SPIE 4616 (2002) 14.CrossRefADSGoogle Scholar
  22. 22).
    W. J. Yoo, D. H. Cho, K. W. Jang, S. H. Shin, J. K. Seo, S.-C. Chung, B. Lee, B. G. Park, J. H. Moon, Y.-H. Cho, and S. Kim: Opt. Rev. 16 (2009) 386.CrossRefGoogle Scholar
  23. 23).
    Y. Ma and B. Zhu: Cem. Concr. Res. 39 (2009) 90.CrossRefGoogle Scholar
  24. 24).
    C. Fernandez-Valdivielso, E. Egozkue, I. R. Matias, F. J. Arregui, and C. Bariain: Sens. Actuators B 91 (2003) 231.CrossRefGoogle Scholar
  25. 25).
    A. Dybko, W. Wroblewski, E. Rozniecka, J. Maciejewski, and Z. Brozka: Sens. Actuators 76 (1999) 203.CrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2011

Authors and Affiliations

  • Wook Jae Yoo
    • 1
  • Kyoung Won Jang
    • 1
  • Jeong Ki Seo
    • 1
  • Ji Yeon Heo
    • 1
  • Jin Soo Moon
    • 1
  • Jae Hoon Jun
    • 1
  • Jang-Yeon Park
    • 1
  • Bongsoo Lee
    • 1
  1. 1.School of Biomedical Engineering, College of Biomedical and Health Science, Research Institute of Biomedical EngineeringKonkuk UniversityChungjuKorea

Personalised recommendations