Optical Review

, Volume 18, Issue 1, pp 114–116 | Cite as

Low loss liquid crystal photonic bandgap fiber in the near-infrared region

  • Lara Scolari
  • Lei Wei
  • Sebastian Gauza
  • Shin-Tson Wu
  • Anders Bjarklev
Regular Papers

Abstract

We infiltrate a perdeuterated liquid crystal with a reduced infrared absorption in a photonic crystal fiber. The H atoms of this liquid crystal were substituted with D atoms in order to move the vibration bands which cause absorption loss to longer wavelengths and therefore reduce the absorption in the spectral range of 1–2 μm. We achieve in the middle of the near-infrared transmission bandgap the lowest loss (about 1 dB) ever reported for this kind of devices.

Keywords

photonic bandgap fiber liquid crystals absorption loss all-in-fiber devices tunability near-infrared region 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    P. Russell: Science 299 (2003) 358.CrossRefADSGoogle Scholar
  2. 2).
    C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers: Opt. Commun. 204 (2002) 179.CrossRefADSGoogle Scholar
  3. 3).
    R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor: Proc. OFC, 2002, p. 466.Google Scholar
  4. 4).
    S. Gauza, C. H. Wen, S.-T. Wu, N. Janarthanan, and C. S. Hsu: Jpn. J. Appl. Phys. 43 (2004) 7634.CrossRefADSGoogle Scholar
  5. 5).
    S.-T. Wu, Q. T. Zhang, and S. Marder: Jpn. J. Appl. Phys. 37 (1998) L1254.CrossRefADSGoogle Scholar
  6. 6).
    T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng: Opt. Express 11 (2003) 2589.CrossRefADSGoogle Scholar
  7. 7).
    L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi: Opt. Express 13 (2005) 7483.CrossRefADSGoogle Scholar
  8. 8).
    T. T. Alkeskjold and A. Bjarklev: Opt. Lett. 32 (2007) 1707.CrossRefADSGoogle Scholar
  9. 9).
    D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold: Opt. Express 15 (2007) 7901.CrossRefADSGoogle Scholar
  10. 10).
    L. Scolari, T. T. Alkeskjold, and A. Bjarklev: Electron. Lett. 42 (2006) 1270.CrossRefGoogle Scholar
  11. 11).
    T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S.-T. Wu: Opt. Express 12 (2004) 5857.CrossRefADSGoogle Scholar
  12. 12).
    J. Lægsgaard: J. Opt. A. 6 (2004) 798.ADSCrossRefGoogle Scholar
  13. 13).
    S.-T. Wu: J. Appl. Phys. 84 (1998) 4462.CrossRefADSGoogle Scholar
  14. 14).
    S.-T. Wu, Q.-H. Wang, M. D. Kempe, and J. A. Kornfield: J. Appl. Phys. 92 (2002) 7146.CrossRefADSGoogle Scholar
  15. 15).
    J. Li, S. Gauza, and S.-T. Wu: J. Appl. Phys. 96 (2004) 19.CrossRefADSGoogle Scholar

Copyright information

© The Optical Society of Japan 2011

Authors and Affiliations

  • Lara Scolari
    • 1
  • Lei Wei
    • 1
  • Sebastian Gauza
    • 2
  • Shin-Tson Wu
    • 2
  • Anders Bjarklev
    • 1
  1. 1.DTU Fotonik, Department of Photonics EngineeringTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.College of Optics and PhotonicsUniversity of Central FloridaOrlandoUSA

Personalised recommendations