Optical Review

, Volume 17, Issue 3, pp 239–247 | Cite as

Coherence of radiation as studied by multiple coincidences of photons and particles

  • Erkki Ikonen
Regular Papers
  • 54 Downloads

Abstract

Coincidences of photons and particles are measured by counting the number of events occurring simultaneously in two or more detectors. Coherent and incoherent radiation may have different behavior when the number of coincidence counts is studied with different arrangements of the coincidence detectors: the coincidence rate for the coherent radiation field, such as that obtained from a single-mode laser, is independent on the transverse separation between the detectors as long as the intensity of the radiation stays constant. On the other hand, with incoherent thermal radiation, using suitable monochromatization, the coincidence rate can show a significant bunching effect at detector separations smaller than the transverse coherence length. As a third alternative, photon antibunching may be observed if the radiation field is prepared in a number state, such as that available from resonance fluorescence of atoms, ions or molecules. If the time resolution of the detectors is not sufficient to resolve separate counts, corresponding effects can be observed in experiments, where the analog outputs of the detectors are multiplied to produce an intensity correlation signal. Intensity correlation and coincidence studies of photons and particles are reviewed in this report starting from the early experiments in the 1950’s and including recent work on X-ray coincidences and three-pion correlations. New results are presented for three- and four-photon coincidences at the X-ray wavelengths.

Keywords

coherence coincidence correlation X-rays pions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    R. Hanbury Brown and R. Q. Twiss: Nature 177 (1956) 27.CrossRefGoogle Scholar
  2. 2).
    R. Hanbury Brown and R. Q. Twiss: Nature 178 (1956) 1046.CrossRefADSGoogle Scholar
  3. 3).
    L. Mandel: Phys. Rev. A 28 (1983) 929.CrossRefMathSciNetADSGoogle Scholar
  4. 4).
    G. Goldhaber, W. B. Fowler, S. Goldhaber, T. F. Hoang, T. E. Kalogeropoulos, and W. M. Powell: Phys. Rev. Lett. 3 (1959) 181.CrossRefADSGoogle Scholar
  5. 5).
    M. Gyulassy, S. K. Kauffmann, and L. W. Wilson: Phys. Rev. C 20 (1979) 2267.CrossRefADSGoogle Scholar
  6. 6).
    H. Bøggild et al. (NA44 Collaboration): Phys. Lett. B 455 (1999) 77.CrossRefADSGoogle Scholar
  7. 7).
    J. Adams et al. (STAR Collaboration): Phys. Rev. Lett. 91 (2003) 262301.CrossRefADSGoogle Scholar
  8. 8).
    E. Ikonen: Phys. Rev. Lett. 68 (1992) 2759.CrossRefADSGoogle Scholar
  9. 9).
    M. Yabashi, K. Tamasaku, and T. Ishikawa: Phys. Rev. Lett. 87 (2001) 140801.CrossRefADSGoogle Scholar
  10. 10).
    M. Yabashi, K. Tamasaku, and T. Ishikawa: Phys. Rev. Lett. 88 (2002) 244801.CrossRefADSGoogle Scholar
  11. 11).
    M. Yabashi, K. Tamasaku, and T. Ishikawa: Phys. Rev. A 69 (2004) 023813.CrossRefADSGoogle Scholar
  12. 12).
    E. Ikonen, M. Yabashi, and T. Ishikawa: Phys. Rev. A 74 (2006) 013816.CrossRefADSGoogle Scholar
  13. 13).
    E. Ikonen and S. Holopainen: Phys. Rev. A 76 (2007) 031801(R).CrossRefADSGoogle Scholar
  14. 14).
    M. Yabashi, J. B. Hastings, M. S. Zolotorev, H. Mimura, H. Yumoto, S. Matsuyama, K. Yamauchi, and T. Ishikawa: Phys. Rev. Lett. 97 (2006) 084802.CrossRefADSGoogle Scholar
  15. 15).
    E. Ikonen: J. Opt. Soc. Am. B 21 (2004) 1403.CrossRefADSGoogle Scholar
  16. 16).
    E. Ikonen: Phys. Rev. C 78 (2008) 051901(R) [Errata; 80 (2009) 019903].CrossRefADSGoogle Scholar
  17. 17).
    R. Hanbury Brown: The Intensity Interferometer (Taylor and Francis, London, 1974).Google Scholar
  18. 18).
    E. M. Purcell: Nature 178 (1956) 1449.CrossRefADSGoogle Scholar
  19. 19).
    G. A. Rebka and R. V. Pound: Nature 180 (1957) 1035.CrossRefADSGoogle Scholar
  20. 20).
    L. Mandel and E. Wolf: Rev. Mod. Phys. 37 (1965) 231.CrossRefMathSciNetADSGoogle Scholar
  21. 21).
    R. J. Glauber: Phys. Rev. 130 (1963) 2529.CrossRefMathSciNetADSGoogle Scholar
  22. 22).
    R. J. Glauber: Phys. Rev. 131 (1963) 2766.CrossRefMathSciNetADSGoogle Scholar
  23. 23).
    H. J. Kimble, M. Dagenais, and L. Mandel: Phys. Rev. Lett. 39 (1977) 691.CrossRefADSGoogle Scholar
  24. 24).
    W. Neuhauser: Phys. Rev. A 1137 (1980) 2766.Google Scholar
  25. 25).
    R. Ghosh and L. Mandel: Phys. Rev. Lett. 59 (1987) 1903.CrossRefADSGoogle Scholar
  26. 26).
    J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquie, G. Messin, A. Browaeys, and P. Grangier: Nature 440 (2006) 779.CrossRefADSGoogle Scholar
  27. 27).
    P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe: Nat. Phys. 3 (2007) 538.CrossRefGoogle Scholar
  28. 28).
    V. Ahtee, R. Lettow, R. Pfab, A. Renn, E. Ikonen, S. Götzinger, and V. Sandoghdar: J. Mod. Opt. 56 (2009) 161.CrossRefADSGoogle Scholar
  29. 29).
    G. I. Kopylov and M. J. Podgoretsky: Yad. Fiz. 18 (1973) 656 [Sov. J. Nucl. Phys. 18 (1974) 336].Google Scholar
  30. 30).
    E. V. Shuryak: Phys. Lett. B 44 (1973) 387.CrossRefADSGoogle Scholar
  31. 31).
    F. Grard et al.: Nucl. Phys. B 102 (1976) 221.CrossRefADSGoogle Scholar
  32. 32).
    M. Deutschmann et al.: Nucl. Phys. B 103 (1976) 198.CrossRefADSGoogle Scholar
  33. 33).
    N. N. Biswas et al.: Phys. Rev. Lett. 37 (1976) 175.CrossRefADSGoogle Scholar
  34. 34).
    G. N. Fowler and R. M. Weiner: Phys. Lett. B 70 (1977) 201.CrossRefADSGoogle Scholar
  35. 35).
    U. Heinz and Q. H. Zhang: Phys. Rev. C 56 (1997) 426.CrossRefADSGoogle Scholar
  36. 36).
    U. Heinz and A. Sugarbaker: Phys. Rev. C 70 (2004) 054908.CrossRefADSGoogle Scholar
  37. 37).
    C. Adler et al. (STAR Collaboration): Phys. Rev. Lett. 87 (2001) 082301.CrossRefADSGoogle Scholar
  38. 38).
    E. V. Shuryak: Zh. Eksp. Theor. Fiz. 67 (1974) 60 [Sov. Phys. JETP 40 (1975) 30].Google Scholar
  39. 39).
    J. Javanainen, P. Helistö, E. Ikonen, and T. Katila: Phys. Rev. Lett. 55 (1985) 2063.CrossRefADSGoogle Scholar
  40. 40).
    G. Perlow: Phys. Rev. Lett. 40 (1978) 896.CrossRefADSGoogle Scholar
  41. 41).
    P. Helistö, E. Ikonen, T. Katila, and K. Riski: Phys. Rev. Lett. 49 (1982) 1209.CrossRefADSGoogle Scholar
  42. 42).
    E. Ikonen, P. Helistö, T. Katila, and K. Riski: Phys. Rev. A 32 (1985) 2298.CrossRefADSGoogle Scholar
  43. 43).
    J. R. Helliwell: Nat. Struct. Biol. 5 (1998) 614.CrossRefGoogle Scholar
  44. 44).
    E. Ikonen and R. Rüffer: Hyperfine Interactions 92 (1994) 1089.CrossRefADSGoogle Scholar
  45. 45).
    Y. Kunimune, Y. Yoda, K. Izumi, M. Yabashi, X. Zhang, T. Harami, M. Ando, and S. Kikuta: J. Synchrotron Radiat. 4 (1997) 199.CrossRefGoogle Scholar
  46. 46).
    R. Z. Tai, Y. Takayama, N. Takaya, T. Miyahara, S. Yamamoto, H. Sugiyama, J. Urakawa, H. Hayano, and M. Ando: Phys. Rev. A 60 (1999) 3262.CrossRefADSGoogle Scholar
  47. 47).
    E. Gluskin, E. E. Alp, I. McNulty, W. Sturhahn, and J. Sutter: J. Synchrotron Radiat. 6 (1999) 1065.CrossRefGoogle Scholar
  48. 48).
    M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa: Rev. Sci. Instrum. 72 (2001) 4080.CrossRefADSGoogle Scholar
  49. 49).
    E. Ikonen: Phys. Rev. A 66 (2002) 065802.CrossRefADSGoogle Scholar
  50. 50).
    L. Mandel and E. Wolf: Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, U.K., 1995).Google Scholar
  51. 51).
    H. Heiselberg and A. P. Vischer: Phys. Rev. C 55 (1977) 874.CrossRefADSGoogle Scholar
  52. 52).
    T. Hara, M. Yabashi, T. Tanaka, T. Bizen, S. Goto, X. M. Marechal, T. Seike, K. Tamasaku, T. Ishikawa, and H. Kitamura: Rev. Sci. Instrum. 73 (2002) 1125.CrossRefADSGoogle Scholar

Copyright information

© The Optical Society of Japan 2010

Authors and Affiliations

  • Erkki Ikonen
    • 1
  1. 1.Metrology Research InstituteAalto University and Centre for Metrology and Accreditation (MIKES)AaltoFinland

Personalised recommendations