Optical Review

, Volume 17, Issue 3, pp 166–170 | Cite as

Estimation of inner surface profile of a tube by two-wavelength phase-shifting digital holography

Regular Papers

Abstract

A novel phase-shifting digital holographic method for estimation of inner surface profiles of tubes is proposed. For surface contouring, a two-wavelength method using injection-current-induced wavelength changes of a laser diode is used. To obtain inner surface information on a tube, a cone-shaped mirror is set inside the tube. Speckle noise occurring in the reconstructed phase difference image is effectively suppressed by an adaptive filtering technique consisting of exponential averaging and masking filtering processes. Distribution of optical path length in the experimental alignment is calculated and well explains the experimental results. It is shown that the calculation of optical path length by a simple model can remove the distortion of profiles occurring in the experimental results and enable the estimation of the inner surface profile of an aluminum tube.

Keywords

phase shifting digital holography two wavelength method inner surface profile optical path length adaptive filtering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    J. M. Bennett and J. H. Dancy: Appl. Opt. 20 (1981) 1785.CrossRefADSGoogle Scholar
  2. 2).
    J. F. Song and T. V. Vorburger: Appl. Opt. 30 (1991) 42.CrossRefADSGoogle Scholar
  3. 3).
    F. Chen, G. M. Brown, and M. Song: Opt. Eng. 39 (2000) 10.CrossRefADSGoogle Scholar
  4. 4).
    Y. Ishii, J. Chen, and K. Murata: Opt. Lett. 12 (1987) 233.CrossRefADSGoogle Scholar
  5. 5).
    M. Yokota, A. Asaka, and T. Yoshino: Appl. Opt. 42 (2003) 1805.CrossRefADSGoogle Scholar
  6. 6).
    G. S. Spagnolo, G. Guattari, C. Sapia, D. Ambrosini, D. Paoletti, and G. Accardo: Opt. Lasers Eng. 33 (2000) 141.CrossRefGoogle Scholar
  7. 7).
    H. Liu, W. H. Su, K. Reichard, and S. Yin: Opt. Commun. 216 (2003) 65.CrossRefADSGoogle Scholar
  8. 8).
    D. K. Hamilton and T. Wilson: Appl. Phys. B 27 (1982) 211.CrossRefADSGoogle Scholar
  9. 9).
    I. Yamaguchi, T. Ida, M. Yokota, and K. Yamashita: Appl. Opt. 45 (2006) 7610.CrossRefADSGoogle Scholar
  10. 10).
    I. Yamaguchi, T. Ida, and M. Yokota: Strain 44 (2008) 349.CrossRefGoogle Scholar
  11. 11).
    U. Schnars and W. Jüptner: Appl. Opt. 33 (1994) 179.CrossRefADSGoogle Scholar
  12. 12).
    I. Yamaguchi and T. Zhang: Opt. Lett. 22 (1997) 1268.CrossRefADSGoogle Scholar
  13. 13).
    F. Palacios, E. Goncalves, J. Ricardo, and J. Valin: Opt. Commun. 238 (2004) 245.CrossRefADSGoogle Scholar

Copyright information

© The Optical Society of Japan 2010

Authors and Affiliations

  1. 1.Faculty of Science and EngineeringShimane UniversityMatsueJapan
  2. 2.Solution Head QuarterProbizmo Co., Ltd.ShimaneJapan

Personalised recommendations