Optical Review

, Volume 16, Issue 3, pp 269–273

Visualization of space charge field effect on excitons in a GaAs quantum dot by near-field optical wavefunction mapping

  • Yoshiaki Sugimoto
  • Nobuhiro Tsumori
  • Shintaro Nomura
  • Toshiharu Saiki
Regular Papers


Near-field photoluminescence (PL) imaging spectroscopy was used to investigate multi-exciton and charged-exciton states confined in a single GaAs interface fluctuation quantum dot. We determined the origin of peaks in the PL spectra by employing a wavefunction mapping technique. We observed distortion of the exciton wavefunction due to the electric field produced by an excess electron at a nearby confined state. Near-field wavefunction mapping was demonstrated to be a powerful tool for visualizing the local environment, which affects the emission properties of quantum dots.


photoluminescence imaging spectroscopy interfacial fluctuation quantum dot near-field scanning microscope multi exciton charged exciton finite-difference time-domain calculation method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    P. Michler: in Single Quantum Dots, ed. P. Michler (Springer, Heidelberg, 2003) p. 315.Google Scholar
  2. 2).
    P. Borri and W. Langbein: in Single Quantum Dots, ed. P. Michler (Springer, Heidelberg, 2003) p. 250.Google Scholar
  3. 3).
    L. Jacak, P. Hawrylak, and A. Wójs: Quantum Dots (Springer, Heidelberg, 1998) Chap. 2, p. 5.Google Scholar
  4. 4).
    H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West: Science 264 (1994) 1740.CrossRefADSGoogle Scholar
  5. 5).
    D. Heiss, V. Jovanov, M. Bichler, G. Abstreiter, and J. J. Finley: Phys. Rev. B 77 (2008) 235442.Google Scholar
  6. 6).
    M. Abbarchi, F. Troiani, C. Mastrandrea, G. Goldoni, T. Kuroda, T. Mano, K. Sakoda, N. Koguchi, S. Sanguinetti, A. Vinattieri, and M. Gurioli: Appl. Phys. Lett. 93 (2008) 162.CrossRefGoogle Scholar
  7. 7).
    K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara: Phys. Rev. Lett. 91 (2003) 177401.Google Scholar
  8. 8).
    Y. Sugimoto, T. Saiki, and S. Nomura: Appl. Phys. Lett. 93 (2008) 083116.Google Scholar
  9. 9).
    A. Kaneta, M. Funato, and Y. Kawakami: Phys. Rev. B 78 (2008) 125317.Google Scholar
  10. 10).
    M. Grochol, F. Grosse, and R. Zimmermann: Phys. Rev. B 71 (2005) 125339.Google Scholar
  11. 11).
    M. Erdmann, C. Ropers, M. Wenderoth, R. G. Ulbrich, S. Malzer, and G. H. Döhler: Phys. Rev. B 74 (2005) 125412.Google Scholar
  12. 12).
    T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano: Appl. Phys. Lett. 68 (1996) 2612.CrossRefADSGoogle Scholar
  13. 13).
    T. Saiki and K. Matsuda: Appl. Phys. Lett. 74 (1999) 2773.CrossRefADSGoogle Scholar
  14. 14).
    K. Karrai and R. D. Grober: Appl. Phys. Lett. 66 (1995) 1842.CrossRefADSGoogle Scholar
  15. 15).
    G. Chen, T. H. Stievater, E. T. Batteh, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham: Phys. Rev. Lett. 88 (2002) 117901.Google Scholar
  16. 16).
    Q. Wu, R. D. Grober, D. Gammon, and D. S. Katzer: Phys. Rev. B 62 (2000) 13022.CrossRefADSGoogle Scholar
  17. 17).
    S. V. Nair and T. Takagahara: Phys. Rev. B 55 (1997) 5153.CrossRefADSGoogle Scholar
  18. 18).
    U. Hohenester, G. Goldoni, and E. Molinari: Appl. Phys. Lett. 84 (2004) 3963.CrossRefADSGoogle Scholar
  19. 19).
    J. G. Tischler, A. S. Bracker, D. Gammon, and D. Park: Phys. Rev. B 66 (2002) 081310.Google Scholar
  20. 20).
    D. M. Sullivan and D. S. Citrin: J. Appl. Phys. 91 (2002) 3219.CrossRefADSGoogle Scholar

Copyright information

© The Optical Society of Japan 2009

Authors and Affiliations

  • Yoshiaki Sugimoto
    • 1
  • Nobuhiro Tsumori
    • 1
  • Shintaro Nomura
    • 2
  • Toshiharu Saiki
    • 1
    • 3
  1. 1.School of Integrated Design EngineeringKeio UniversityYokohamaJapan
  2. 2.Institute of PhysicsUniversity of TsukubaTsukuba, IbarakiJapan
  3. 3.Kanagawa Academy of Science and TechnologyKawasakiJapan

Personalised recommendations