Advertisement

Optical Review

, Volume 16, Issue 3, pp 241–246 | Cite as

A thin and compact compound-eye imaging system incorporated with an image restoration considering color shift, brightness variation, and defocus

  • Ryoichi Horisaki
  • Yoshizumi Nakao
  • Takashi Toyoda
  • Keiichiro Kagawa
  • Yasuo Masaki
  • Jun Tanida
Regular Papers

Abstract

A compact system of the thin observation module by bound optics (TOMBO) imager based on compound-eye imaging has been constructed to demonstrate its advantages over single-eye imaging systems such as thinner hardware. To reconstruct a high-resolution image from low resolution images captured by the compound-eye optics, we propose an image restoration scheme based on the iterative back-projection algorithm with depth map estimated from the disparities on the captured image. The scheme includes suppression of unit-by-unit color shift caused by the offset microlenses and the color filters on the commercial image sensors and deblurring of defocus by geometrical optics using the depth map. In the experiment, three-dimensional objects were captured by the TOMBO imager and reconstructed with the scheme. After the processing, the power spectrum of the captured image was improved by up to 19 dB, and the power spectrum of the effect of the color shift was reduced by 7 dB.

Keywords

compound-eye camera TOMBO super-resolution depth estimation image restoration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    S. Mathur, M. Okincha, and M. Walters: In Proc. 2007 Int. Image Sensor Workshop, 2007, p. 145.Google Scholar
  2. 2).
    E. Dowski, Jr. and W. Cathy: Appl. Opt. 34 (1995) 1859.CrossRefADSGoogle Scholar
  3. 3).
    E. Tremblay, R. Stack, R. Morrison, and J. Ford: Appl. Opt. 46 (2007) 463.CrossRefADSGoogle Scholar
  4. 4).
    J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka: Appl. Opt. 40 (2001) 1806.CrossRefADSGoogle Scholar
  5. 5).
    J. Tanida, R. Shogenji, Y. Kitamura, K. Yamada, M. Miyamoto, and S. Miyatake: Opt. Express 11 (2003) 2109.CrossRefADSGoogle Scholar
  6. 6).
    R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida: Opt. Express 12 (2004) 1643.CrossRefADSGoogle Scholar
  7. 7).
    R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida: Appl. Opt. 43 (2004) 1355.CrossRefADSGoogle Scholar
  8. 8).
    Y. Kitamura, R. Shogenji, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Miyasaki, N. Kondou, D. Miyazaki, J. Tanida, and Y. Ichioka: Appl. Opt. 43 (2004) 1719.CrossRefADSGoogle Scholar
  9. 9).
    K. Nitta, R. Shogenji, S. Miyatake, and J. Tanida: Appl. Opt. 45 (2004) 2893.CrossRefADSGoogle Scholar
  10. 10).
    R. Horisaki, S. Irie, Y. Ogura, and J. Tanida: Opt. Rev. 14 (2006) 263.CrossRefGoogle Scholar
  11. 11).
    P. Catrysse and B. Wandell: Proc. SPIE 5768 (2005) 1.CrossRefGoogle Scholar
  12. 12).
    M. Irani and S. Peleg: CVGIP Graph. Models Image Process 53 (1991) 231.CrossRefGoogle Scholar
  13. 13).
    D. Forsyth and J. Ponce: Computer Vision: A Modern Approach (Prentice Hall, 2002).Google Scholar
  14. 14).
    D. Capel and A. Zisserman: In Proc. Int. Conf. Pattern Recognition, 2000, p. 600.Google Scholar
  15. 15).
    J. Nelder and R. Mead: Comput. J. 7 (1965) 308.zbMATHGoogle Scholar
  16. 16).
    W. Press, S. Teukolsky, W. Vettring, and B. Flannery: Numerical Recipes in C (Cambridge University Press, Cambridge, U.K., 1992).zbMATHGoogle Scholar

Copyright information

© The Optical Society of Japan 2009

Authors and Affiliations

  • Ryoichi Horisaki
    • 1
  • Yoshizumi Nakao
    • 2
  • Takashi Toyoda
    • 2
  • Keiichiro Kagawa
    • 1
  • Yasuo Masaki
    • 2
  • Jun Tanida
    • 1
  1. 1.Department of Information and Physical Sciences, Graduate School of Information Science and TechnologyOsaka UniversityOsakaJapan
  2. 2.Funai Electric Co., Ltd.OsakaJapan

Personalised recommendations