Optical Review

, Volume 16, Issue 2, pp 49–53 | Cite as

Image quality assessment using the singular value decomposition theorem

  • Azadeh Mansouri
  • Ahmad Mahmoudi Aznaveh
  • Farah Torkamani-Azar
  • J. Afshar Jahanshahi
Regular Papers

Abstract

In objective image quality metrics, one of the most important factors is the correlation of their results with the perceived quality measurements. In this paper, a new method is presented based on comparing between the structural properties of the two compared images. Based on the mathematical concept of the singular value decomposition (SVD) theorem, each matrix can be factorized to the products of three matrices, one of them related to the luminance value while the two others show the structural content information of the image. A new method to quantify the quality of images is proposed based on the projected coefficients and the left singular vector matrix of the disturbed image based on the right singular vector matrix of the original image. To evaluate this performance, many tests have been done using a widespread subjective study involving 779 images of the Live Image Quality Assessment Database, Release 2005. The objective results show a high rate of correlation with subjective quality measurements.

Keywords

image processing image quality matrix algebra matrix decomposition and singular value decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    A. M. Eskicioglu: Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Turkey, 2000, Vol. 4, p. 1907.Google Scholar
  2. 2).
    A. M. Eskicioglu and P. S. Fisher: IEEE Trans. Commun. 43 (1995) 2959.CrossRefGoogle Scholar
  3. 3).
    H. R. Sheihk, A. C. Bovic, and G. de Veciana: IEEE Trans. Image Process. 14 (2005) 2117.CrossRefADSGoogle Scholar
  4. 4).
    Z. Wang and A. C. Bovic: IEEE Signal Process. Lett. 9 (2002) 81.CrossRefADSGoogle Scholar
  5. 5).
    Z. Wang, A. C. Bovic, H. R. Sheikh, and E. P. Simoncelli: IEEE Trans. Image Process. 13 (2004) 600.CrossRefADSGoogle Scholar
  6. 6).
    Z. Wang, E. Simoncelli, and A. C. Bovic: Proc. IEEE 37th Asilomar Conf. Signal, Systems and Computers, PacificGrove, CA, 2003.Google Scholar
  7. 7).
    H. R. Sheihk and A. C. Bovic: IEEE Trans. Image Process. 15 (2006) 430.CrossRefADSGoogle Scholar
  8. 8).
    S. Daly: The Visible Difference Predictor: An Algorithm for the Assessment of Image Fidelity, Digital Image and Human Vision (MIT Press, 1993) p. 179.Google Scholar
  9. 9).
    J. Lubin: Visual Models for Target Detection and Recognition (World Scientific, Singapore, 1995) p. 207.Google Scholar
  10. 10).
    A. M. Eskicioglu, A. Gusev, and A. Shnayderman: IEEE Trans. Image Process. 15 (2006) 422.CrossRefADSGoogle Scholar
  11. 11).
    M. Miyahara, K. Kotani, and V. R.: IEEE Trans. Commun. 46 (1998) 1215.CrossRefGoogle Scholar
  12. 12).
    F. Torkamani-Azar and S. A. Amirshahi: IEEE Int. Symp. 9th Signal Processing and Its Applications, Sharjeh, ISSPA07, 2007.Google Scholar
  13. 13).
    A. Mahmoudi Aznaveh, A. Mansouri, F. Torkamani-Azar, and M. Eslami: Opt. Rev. 6 (2009) 30.CrossRefGoogle Scholar
  14. 14).
    A. K. Jain: Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, NJ, 1989).MATHGoogle Scholar
  15. 15).
  16. 16).
    B. Davis and J. Uhl: Matrices, Geometry and Mathematica, Math Everywhere (Inc., 1999) Part of the “Calculus and Mathematica” series of books.Google Scholar
  17. 17).
    H. R. Sheikh, Z. Wang, L. Cormack, and A. C. Bovik: Live Image Quality Assessment Database, Release 2005: http://live.ece.utexas.edu/research/quality.
  18. 18).
    H. R. Sheihk, M. F. Sabir, and A. C. Bovic: IEEE Trans. Image Process. 15 (2006) 3441.ADSGoogle Scholar
  19. 19).
    A. M. Rohaly, J. Libert, P. Corriveau, and A. Webster: Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment, 2000.Google Scholar
  20. 20).
    G. H. Chen, C. L. Yang, and S. L. Xie: Proc. IEEE Int. Conf. Image, Atlanta, 2006, p. 2929.Google Scholar
  21. 21).
    G. H. Chen, C. L. Yang, L. M. Po, and S. L. Xie: Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, 2006Google Scholar

Copyright information

© The Optical Society of Japan 2009

Authors and Affiliations

  • Azadeh Mansouri
    • 1
  • Ahmad Mahmoudi Aznaveh
    • 1
  • Farah Torkamani-Azar
    • 1
  • J. Afshar Jahanshahi
    • 1
  1. 1.Faculty of Electrical and Computer EngineeringUniversity of Shahid BeheshtiTehranIran

Personalised recommendations