Optical Review

, Volume 15, Issue 6, pp 302–308 | Cite as

Recovery of reflectance spectra from colorimetric data using principal component analysis embedded regression technique

  • Tina Harifi
  • Seyed Hossein Amirshahi
  • Farnaz Agahian
Regular Papers


The classical principal component analysis technique is enhanced for reconstruction of reflectance spectra of surface colors from the corresponding tristimulus values under a given set of viewing conditions, i.e., D65 illuminant and 1964 standard observer. In this paper, the number of implemented eigenvectors has been virtually extended from three to six by estimation of another set of tristimulus values under illuminant A and 1964 standard observer. The second set of colorimetric data was predicted by the conventional non-linear regression method and used in the spectral reconstruction to produce a fully determined system in the case of six eigenvectors. The improvement obtained from the proposed modification was examined for the recovery of the reflectance spectra of Munsell color chips as well as ColorChecker DC samples. The performance is evaluated by the mean, maximum and standard deviation of color difference values under other sets of light sources. The values of mean, maximum and standard deviation of root mean square (RMS) errors between the reproduced and the actual spectra were also calculated. Results are compared with those obtained from traditional methods using the principal component analysis (PCA) routine. All metrics show that the suggested method leads to considerable improvements in comparison with the standard PCA approach.

Key words

reflectance spectrum reconstruction principal component analysis regression technique tristimulus values 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    D. H. Marimont and B. A. Wandell: J. Opt. Soc. Am. A 9 (1992) 1905.CrossRefADSGoogle Scholar
  2. 2).
    H. S. Fairman and M. H. Brill: Color Res. Appl. 29 (2004) 104.CrossRefGoogle Scholar
  3. 3).
    D. Connah, S. Westland, and M. G. A. Thomson: Color Technol. 117 (2001) 309.CrossRefGoogle Scholar
  4. 4).
    S. Westland and C. Ripamonti: Computational Colour Science (Wiley, Chichester, U.K., 2004) p. 161.Google Scholar
  5. 5).
    L. T. Maloney: J. Opt. Soc. Am. A 3 (1986) 29.CrossRefADSGoogle Scholar
  6. 6).
    J. Parkkinen, J. Halikainen, and T. Jaaskelainen: J. Opt. Soc. Am. A 6 (1989) 318.CrossRefADSGoogle Scholar
  7. 7).
    T. Jaaskelainen, J. Parkkinen, and S. Toyooka: J. Opt. Soc. Am. A 7 (1990) 725.CrossRefADSGoogle Scholar
  8. 8).
    M. J. Vrhel, R. Gershon, and L. S. Iwan: Color Res. Appl. 19 (1994) 4.Google Scholar
  9. 9).
    J. Romero, A. Garcia-Beltran, and J. Hernandez-Andres: J. Opt. Soc. Am. A 14 (1997) 1007.CrossRefADSGoogle Scholar
  10. 10).
    A. Garcia-Beltran, J. L. Nieves, J. Hernandez-Andres, and J. Romero: Color Res. Appl. 23 (1998) 39.CrossRefGoogle Scholar
  11. 11).
    I. T. Jolliffe: Principal Component Analysis (Springer-Verlag, New York, 2002) Springer Series in Statistics, 2nd ed., p. 1.MATHGoogle Scholar
  12. 12).
    D. Y. Tzeng and R. S. Berns: Color Res. Appl. 30 (2005) 84.CrossRefGoogle Scholar
  13. 13).
    J. Y. Hardeberg: Dr. Thesis, University de Paris VI., Paris (1999).Google Scholar
  14. 14).
    H. Laamanen, T. Jaaskelainen, and S. Parkkinen: Proc. SPIE 4197 (2001) 367.CrossRefADSGoogle Scholar
  15. 15).
    K. Ansari, S. H. Amirshahi, and S. Moradian: Color Technol. 122 (2006) 128.CrossRefGoogle Scholar
  16. 16).
    F. Ayala, J. F. Echavarri, and P. Renet: J. Opt. Soc. Am. A 23 (2006) 2020.CrossRefADSGoogle Scholar
  17. 17).
    X. Zhang and H. Xu: J. Opt. Soc. Am. A 25 (2008) 371.CrossRefADSGoogle Scholar
  18. 18).
    F. Agahian, S. A. Amirshahi, and S. H. Amirshahi: Color Res. Appl. 33 (2008) 360.CrossRefGoogle Scholar
  19. 19).
    D. Dupont: Color Res. Appl. 27 (2002) 88.CrossRefGoogle Scholar
  20. 20).
    Y. Zhao and R. S. Berns: Color Res. Appl. 32 (2007) 343.CrossRefGoogle Scholar
  21. 21).
    Spectral Database, University of Joensuu Color Group, http://spectral.joensuu.fi.
  22. 22).
    Matlab (2002), The MathWork Inc., ver. 6.5.Google Scholar

Copyright information

© The Optical Society of Japan 2008

Authors and Affiliations

  • Tina Harifi
    • 1
  • Seyed Hossein Amirshahi
    • 1
  • Farnaz Agahian
    • 1
  1. 1.Department of Textile EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations