Optical Review

, Volume 14, Issue 1, pp 1–13 | Cite as

Influence of the Grain Boundaries on the Heat Transfer in Laser Ceramics

  • Jean-Francois Bisson
  • Hideki Yagi
  • Takakimi Yanagitani
  • Alexander Kaminskii
  • Yuri N. Barabanenkov
  • Ken-Ichi Ueda
Invited Review Paper


Grain boundaries play a key role in determining several key properties of polycrystalline laser ceramics. Heat transfer measurements at low temperature constitute a good tool to probe grain boundaries. We review the results of heat transfer measurements in polycrystalline Y3Al5O12 garnets as well as Y2O3 and Lu2O3 sesquioxide materials obtained by self-energy-driven sintering of nano-particles. The average phonon mean free path in Y3Al5O12 was found to be significantly larger than the average grain size and to scale with temperature as T−2 at low temperature. Existing models describing the interaction between phonons and grain boundaries are reviewed. Correct temperature dependence of the mean free path and order of magnitude of scattering rates were found by assuming the existence of a grain boundary layer having acoustic properties different from those of the bulk. A different temperature dependence of phonon mean free path was found for the sesquioxides and was ascribed to the stronger elastic anisotropy of these materials. The thermal resistance associated to the grain boundaries of laser ceramics was found to be lower than in other dense polycrystalline ceramic materials reported in the literature.

Key words

laser ceramics garnets sesquioxides grain boundaries thermal conductivity phonons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida: J. Am. Ceram. Soc. 78 (1995) 1033.CrossRefADSGoogle Scholar
  2. 2.
    K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. Kaminskii: Laser Phys. 15 (2005) 927.Google Scholar
  3. 3.
    M. Jelinek, J. Lancok, J. Sonsky, J. Oswald, M. Simeckova, L. Jstrabik, V. Studnicka, C. Grivas, and P. Hribek: Czechoslovak J. Phys. 48 (1998) 577.CrossRefADSGoogle Scholar
  4. 4.
    A. V. Khodolov and K. M. Golant: Tech. Phys. 50 (2005) 719.CrossRefGoogle Scholar
  5. 5.
    J. H. Park, K. S. Hong, W. J. Cho, and J. H. Chung: Jpn. J. Appl. Phys. 42 (2003) 2839.CrossRefGoogle Scholar
  6. 6.
    J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K. I. Ueda, T. Yanagitani, and A. A. Kaminskii: Appl. Phys. B 79 (2004) 25.CrossRefADSGoogle Scholar
  7. 7.
    L. Mezeix and D. J. Green: Int. J. Appl. Ceram. Technol. 3 (2006) 166.CrossRefGoogle Scholar
  8. 8.
    A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda: Crystallogr. Rep. 50 (2005) 869.CrossRefGoogle Scholar
  9. 9.
    J.-F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, and K. I. Ueda: Jpn. J. Appl. Phys. 42 (2003) L1025.CrossRefGoogle Scholar
  10. 10.
    G. J. Quarles: oral presentation at Photonic West 2005.Google Scholar
  11. 11.
    T. Uematsu, T. Murai, K. Takaichi, K. Misawa, J. Lu, H. Yagi, T. Yanagitani, and K. Ueda: Tech. Rep. IEICE LQE2001-20 (2001)23 [in Japanese].Google Scholar
  12. 12.
    H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda: Ceram. Int. (2006) on line.Google Scholar
  13. 13.
    T. Numazawa, O. Arai, Q. Hu, and T. Noda: Meas. Sci. Technol. 12 (2001) 2089.CrossRefADSGoogle Scholar
  14. 14.
    G. A. Slack and D. W. Oliver: Phys. Rev. B 4 (1971) 592.CrossRefADSGoogle Scholar
  15. 15.
    C. Kittel: Introduction to Solid State Physics (John Wiley, Hoboken, NJ, 2005) 8th ed.Google Scholar
  16. 16.
    S. N. Ivanov, A. G. Kozorezov, A. V. Ivanov, A. V. Taranov, et al.: Sov. Phys. Solid State 38 (1996) 792.Google Scholar
  17. 17.
    Yu, N. Barabanenkov, S. N. Ivanov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, and A. A. Kamiskii: JETP Lett. 79 (2004) 342.CrossRefGoogle Scholar
  18. 18.
    J. Callaway: Phys. Rev. 113 (1959) 1046.CrossRefADSGoogle Scholar
  19. 19.
    P. G. Klemens: Phys. Rev. 119 (1960) 507.CrossRefADSGoogle Scholar
  20. 20.
    H. B. G. Casimir: Physica 5 (1938) 495.CrossRefADSGoogle Scholar
  21. 21.
    H. Yagi, T. Yanagitani, and K. Ueda: J. Alloys Compd. 421 (2005) 195.CrossRefGoogle Scholar
  22. 22.
    P. L. Kapitza: Zh. Eksp. Teor. Fiz. 11 (1941) 1 [Translation: J. Phys. (USSR) 4 (1941) 181].Google Scholar
  23. 23.
    W. A. Little: Can. J. Phys. 37 (1959) 334.ADSGoogle Scholar
  24. 24.
    M. Msall, W. Dietsche, K. J. Friedland, and Q.-Y. Tong: Phys. Rev. Lett. 85 (2000) 598.CrossRefADSGoogle Scholar
  25. 25.
    M. Msall, W. Dietsche, K. J. Friedland, Q.-Y. Tong, and B. Mohr: Physica B 316 (2002) 366.CrossRefADSGoogle Scholar
  26. 26.
    M. A. Weilert, M. E. Msall, A. C. Anderson, and J. P. Wolfe: Phys. Rev. Lett. 71 (1993) 735.CrossRefADSGoogle Scholar
  27. 27.
    J. Weber, W. Sandmann, W. Dietsche, and H. Kinder: Phys. Rev. Lett. 40 (1978) 1469.CrossRefADSGoogle Scholar
  28. 28.
    H. C. Basso, W. Dietsche, H. Kinder, and P. Leiderer: Kapitza Resistance of Laser Annealed Surfaces, ed. W. Eisenmenger, K. Lassmann, and S. Döttinger (Springer, New York, 1984) p. 212.Google Scholar
  29. 29.
    E. T. Swartz and R. O. Pohl: Rev. Mod. Phys. 61 (1989) 605.CrossRefADSGoogle Scholar
  30. 30.
    D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot: J. Appl. Phys. 93 (2003) 793.CrossRefADSGoogle Scholar
  31. 31.
    J. M. Ziman: Electrons and Phonons (Oxford University Press, Oxford, 1960).MATHGoogle Scholar
  32. 32.
    For example, density of fused silica is p = 2.2g/cm3, compared to 2.65 g/cm3 for quartz.Google Scholar
  33. 33.
    R. R. Monchamp: J. Cryst. Growth 11 (1971) 310.CrossRefGoogle Scholar
  34. 34.
    A. D. McConnell, S. Uma, and K. E. Goodson: J. Micro-electromech. Syst. 10 (2001) 360.Google Scholar
  35. 35.
    S. F. Akhmetov, G. L. Akhmetova, G. A. Gazizova, V. S. Kovalenko, and T. F. Mirenkova: Russian J. Inorg. Chem. 22 (1977) 1613.Google Scholar
  36. 36.
    S. N. Ivanov, Y. N. Barabanenkov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, S. Bagayev, and A. Kaminskii: Phys. Status Solidi B 242 (2005) 1983.CrossRefADSGoogle Scholar
  37. 37.
    A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani: Laser Phys. Lett. 3 (2006) 375.CrossRefGoogle Scholar
  38. 38.
    R. C. Picu and V. Gupta: J. Appl. Mech. 63 (1996) 295.Google Scholar
  39. 39.
    V. Tvergaard and J. W. Hutchison: J. Am. Ceram. Soc. 71 (1988) 157.CrossRefADSGoogle Scholar
  40. 40.
    D. A. Young and H. J. Maris: Phys. Rev. B 40 (1989) 3685.CrossRefADSGoogle Scholar
  41. 41.
    J. E. Graebner, M. E. Reiss, L. Seibles, T. M. Hartnett, R. P. Miller, and C. J. Robinson: Phys. Rev. B 50 (1994) 3702.CrossRefADSGoogle Scholar
  42. 42.
    H. J. McSkimin and P. Andreatch: J. Appl. Phys. 43 (1972) 2944.CrossRefADSGoogle Scholar
  43. 43.
    H. J. McSkimin: J. Appl. Phys. 24 (1953) 988.CrossRefGoogle Scholar
  44. 44.
    F. J. Morin and J. P. Maita: Phys. Rev. 96 (1954) 28.CrossRefADSGoogle Scholar
  45. 45.
    S. P. Nikanorov and B. K. Kardashev: Elasticity and Dislocation Inelasticity of Crystals (Nauka” Publ. House, Moscow, 1985) [in Russian].Google Scholar
  46. 46.
    K. Kunc, M. Balkanski, and M. A. Nusimovici: Phys. Status Solidi B 72 (1975) 229.Google Scholar
  47. 47.
    E. G. Spencer, R. T. Denton, T. B. Bateman, W. B. Snow, and L. G. Van Uitert: J. Appl. Phys. 34 (1963) 2059.CrossRefGoogle Scholar
  48. 48.
    J. W. Palko, W. M. Kriven, S. V. Sinogeikin, J. D. Bass, and Ali Savir: J. Appl. Phys. 89 (2001) 7791.CrossRefADSGoogle Scholar
  49. 49.
    D. T. Morelli, C. Uher, and C. J. Robinson: Appl. Phys. Lett. 62 (1993) 1085.CrossRefADSGoogle Scholar
  50. 50.
    R. Berman: Proc. Phys. Soc. A 65 (1952) 1029.Google Scholar
  51. 51.
    K. Watari, H. Nakano, K. Sato, K. Urabe, K. Ishizaki, S. Cao, and K. Mori: J. Am. Ceram. Soc. 86 (2003) 1812.Google Scholar
  52. 52.
    K. Watari, H. Nakano, K. Urabe, K. Ishizaki, S. Cao, and K. Mori: J. Mater. Res. 17 (2002) 2940.Google Scholar

Copyright information

© The Optical Society of Japan 2007

Authors and Affiliations

  • Jean-Francois Bisson
    • 1
  • Hideki Yagi
    • 1
    • 2
  • Takakimi Yanagitani
    • 2
  • Alexander Kaminskii
    • 3
  • Yuri N. Barabanenkov
    • 4
  • Ken-Ichi Ueda
    • 1
  1. 1.Institute for Laser ScienceUniversity of Electro-CommunicationsChofu, TokyoJapan
  2. 2.Takuma WorksKonoshima Chemical Co., Ltd.Takuma, Mitoyo-gun, KagawaJapan
  3. 3.Institute of CrystallographyRussian Academy of Sciences, Crystal Laser Physics LaboratoryMoscowRussia
  4. 4.Institute of Radio Engineering and Electronics, Russian Academy of SciencesMoscowRussia

Personalised recommendations