Optical Review

, Volume 13, Issue 6, pp 405–409

Analysis of Polarization State by Digital Holography with Polarization Modulation

  • Masayuki Yokota
  • Yoshitaka Terui
  • Ichirou Yamaguchi


The digital holographic technique is applied to analyze the spatial distribution of polarization state of light transmitted through anisotropic objects using an orthogonal linearly polarized reference beam. The polarization orientation of reference beam is switched by an optical fiber Faraday rotator for successive hologram recording. To confirm the principle of polarization analysis, a quarter wave plate (QWP) is used and the distribution of polarization state over the object surface is analyzed for various orientations of the QWP. By providing an area of a known polarization for a part of the object wave as a reference, a phase drift of the reference waves can be evaluated and compensated for using the reference area. The principal axis and ellipticity of polarization ellipse are calculated and compared with their theoretical values. A good agreement between the experimental and theoretical values is observed.

Key words

digital holography polarization Faraday rotator flint glass fiber 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. de Boer, T. E. Milner, M. J. C. van Gemert and J. S. Nelson: Opt. Lett. 22 (1997) 934.ADSGoogle Scholar
  2. 2.
    J. Moreau, V. Loriette and A.-C. Boccara: Appl. Opt. 42 (2003) 3811.ADSGoogle Scholar
  3. 3.
    A. Asundi, L. Tong and C. G. Boay: Appl. Opt. 40 (2001) 3654.ADSGoogle Scholar
  4. 4.
    S. Berezhna, I. Berezhnyy, M. Takashi and A. Voloshin: Appl. Opt. 40 (2001) 52.ADSGoogle Scholar
  5. 5.
    Y. Zhu, T. Koyama, T. Takada and Y. Murooka: Appl. Opt. 38 (1999) 2225.ADSGoogle Scholar
  6. 6.
    S. Drobczynski and H. Kasprzak: Appl. Opt. 44 (2005) 3160.CrossRefADSGoogle Scholar
  7. 7.
    K. Oka and Y. Ohtsuka: Exp. Mech. 33 (1993) 44.CrossRefGoogle Scholar
  8. 8.
    Y. Ohtsuka and K. Oka: Appl. Opt. 33 (1994) 2633.ADSCrossRefGoogle Scholar
  9. 9.
    K. Oka: Opt. Express 11 (2003) 1500.ADSCrossRefGoogle Scholar
  10. 10.
    D. Beghuin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacretaz and R. Salathe: Electron. Lett. 35 (1999) 2053.CrossRefGoogle Scholar
  11. 11.
    T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet and C. Depeursinge: Appl. Opt. 41 (2002) 27.ADSGoogle Scholar
  12. 12.
    T. Colomb, E. Cuche, F. Montfort, P. Marquet and C. Depeursinge: Opt. Commun. 231 (2004) 137.CrossRefADSGoogle Scholar
  13. 13.
    U. Schnars and W. Jüptner: Appl. Opt. 33 (1994) 179.ADSCrossRefGoogle Scholar
  14. 14.
    I. Yamaguchi and T. Zhang: Opt. Lett. 22 (1997) 1268.ADSGoogle Scholar
  15. 15.
    M. Yokota, Y. Sato, I. Yamaguchi, T. Kenmochi and T. Yoshino: Meas. Sci. Technol. 15 (2004) 143.CrossRefADSGoogle Scholar
  16. 16.
    M. Born and E. Wolf: Principles of Optics (Cambridge University Press, Cambridge, 1999) 7th ed., Chap. 1, p. 28.Google Scholar
  17. 17.
    E. Cuche, P. Marquet and C. Depeursinge: Appl. Opt. 39 (2000) 4070.ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2006

Authors and Affiliations

  • Masayuki Yokota
    • 1
  • Yoshitaka Terui
    • 1
  • Ichirou Yamaguchi
    • 1
  1. 1.Department of Electronic EngineeringFaculty of Engineering, Gunma UniversityKiryuJapan

Personalised recommendations