Advertisement

Optical Review

, Volume 13, Issue 5, pp 303–307 | Cite as

Studies on Molecular Structure of Ethanol-Water Clusters by Fluorescence Spectroscopy

  • Ying Liu
  • Xiaosen Luo
  • Zhonghua Shen
  • Jian Lu
  • Xiaowu NiEmail author
QUANTUM OPTICS AND SPECTROSCOPY

Abstract

It was found that ethanol and water molecules mixed together can form new clusters. Based on the steady state spectral characteristic and the mole ratio method, three possible bonding constants of ethanol-water clusters were deduced. To confirm the structure of these clusters, the fluorescence lifetimes of different emission bands were investigated, and the average lifetime of the entire decay process was found to vary as the volume percent of ethanol changed. Furthermore, the possible bonding constant n of molecular clusters was determined to be 2 based on the time-resolved spectra, and the cluster was concluded to be a chain structure formed by one ethanol molecule and two water molecules with hydrogen bonds.

Key words

fluorescence spectrum fluorescence lifetime ethanol-water cluster 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Sarkar and R. N. Joarder: J. Chem. Phys. 99 (1993) 2032.CrossRefADSGoogle Scholar
  2. I. M. Svishchev and P. G. Kusalik: J. Chem. Phys. 100 (1994) 5165.CrossRefADSGoogle Scholar
  3. A. K. Soper and J. L. Finney: Phys. Rev. Lett. 71 (1993) 4346.CrossRefADSGoogle Scholar
  4. S. Dixit, J. Crain and W. C. K. Poon: Nature 416 (2002) 829.CrossRefADSGoogle Scholar
  5. J.-H. Guo, Y. Luo, A. Augustsson, S. Kashtanov, J.-E. Rubensson, D. K. Shuh, H. Ågren and J. Nordgren: Phys. Rev. Lett. 91 (2003) 157401.CrossRefADSGoogle Scholar
  6. C. Talon, M. A. Ramos and S. Vieira: Phys. Rev. B 66 (2002) 012201.ADSGoogle Scholar
  7. A. Matic, C. Masciovecchio and D. Engberg: Phys. Rev. Lett. 93 (2004) 145502.CrossRefADSGoogle Scholar
  8. A. Criado and M. Jimenez-Ruiz: Phys. Rev. B 61 (2000) 12082.ADSGoogle Scholar
  9. M. A. González, E. Enciso, F. J. Bermejo and M. Bee: Phys. Rev. B 61 (2000) 6654.ADSGoogle Scholar
  10. R. A. David and J. C. Stewart: Phys. Rev. B 60 (1999) 6328.Google Scholar
  11. C. J. Benmore and Y. L. Loh: J. Chem. Phys. 112 (2002) 5877.CrossRefADSGoogle Scholar
  12. R. S. Taylor and R. L. Shields: J. Chem. Phys. 119 (2003) 12569.CrossRefADSGoogle Scholar
  13. M. A. Miller, M. Jimenez-Ruiz, F. J. Bermejo and N. O. Birge: Phys. Rev. B 57 (1998) 13977.ADSGoogle Scholar
  14. Y. Liu, C. D. Peng, X. F. Lan, X. S. Luo, Z. H. Shen, J. Lu and X. W. Ni: Acta Phys. Sinica 54 (2005) 5455 [in Chinese].Google Scholar
  15. K. D. Belfield, M. V. Bondar, O. V. Przhonska and K. J. Schafer: J. Fluorescence 12 (2002) 449.CrossRefGoogle Scholar
  16. A. N. Solovev and V. I. Yuzhakov: Opt. Spectrosc. 72 (1992) 66.ADSGoogle Scholar
  17. L. M. Jeanne: Molecular Spectroscopy (Science Press, Beijing, 2003) Chap. 5, p. 119.Google Scholar
  18. E. K. Fraiji, T. R. Cregan, Jr. and T. C. Werner: Appl. Spectrosc. 48 (1994) 79.CrossRefADSGoogle Scholar

Copyright information

© The Optical Society of Japan 2006

Authors and Affiliations

  • Ying Liu
    • 1
    • 2
  • Xiaosen Luo
    • 1
  • Zhonghua Shen
    • 1
  • Jian Lu
    • 1
  • Xiaowu Ni
    • 1
    • 2
    Email author
  1. 1.College of Science, Nanjing University of Science and TechnologyNanjingChina
  2. 2.Department of PhysicsXuzhou Normal UniversityXuzhouChina

Personalised recommendations