Optical Review

, Volume 12, Issue 6, pp 467–471

A New Method of Solving Multimode Coupled Equations for Analysis of Uniform and Non-Uniform Fiber Bragg Gratings and Its Application to Acoustically Induced Superstructure Modulation

PHOTONICS AND OPTOELECTRONICS

Abstract

A new and simple mathematical formulation that is employed to analyze numerically coupled-mode equations modeling uniform and non-uniform gratings in optical fiber is investigated. This method would be straightforward and thus beneficial to solve multimode coupled equations in comparison with a previously used fundamental matrix method, and the Runge--Kutta algorithm. The new formulation proposed in this study is applied to calculate transmission and reflection spectra of core mode and higher-order cladding modes of acoustically induced superstructure modulation caused by microbending through fiber Bragg gratings (FBGs). Co-directional and contra-directional couplings based on acoustically induced modulation in FBGs have been discussed for a variety of induced coupling coefficients.

Key words

fiber Bragg grating (FBG) acoustically induced microbending coupled-mode theory n × n coefficient matrix similarity transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1) L. A. Weller-Brophy: J. Opt. Soc. Am. A 2 (1985) 863.ADSCrossRefGoogle Scholar
  2. 2.
    2) M. Yamada and K. Sakuda: Appl. Opt. 26 (1987) 3474.ADSCrossRefGoogle Scholar
  3. 3.
    3) T. Erdogan: J. Lightwave Technol. 15 (1997) 1277.CrossRefADSGoogle Scholar
  4. 4.
    4) N.-H. Sun, C. C. Chou, M.-J. Chang, C. N. Lin, C. C. Yang, Y.-W. Kiang and W.-F. Liu: J. Lightwave Technol. 20 (2002) 311.ADSGoogle Scholar
  5. 5.
    5) H. Kogelnik: in Theory of Optical Waveguides in Guided-Wave Optoelectronics, ed. T. Tamir (Springer-Verlag, Berlin, 1990) p. 77.Google Scholar
  6. 6.
    6) F. Abrishamian, Y. Nakai, S. Sato and M. Imai: to be published in Special Issue of Int. J. Microwave Opt. Technol. (2005).Google Scholar
  7. 7.
    7) W. H. Press, S. A. Teukolsky, W. T. Wetterling and B. P. Flannery: Numerical Recipes in C++: The Art of Scientific Computing (Cambridge University Press, Cambridge, 2002) 2nd ed., p. 461.Google Scholar
  8. 8.
    8) W. F. Liu, P. St. Russel and L. Dong: J. Lightwave Technol. 16 (1998) 2006.CrossRefADSGoogle Scholar
  9. 9.
    9) P. St. J. Russel and F. W. Liu: J. Opt. Soc. Am. A 17 (2000) 1421.ADSGoogle Scholar
  10. 10.
    10) D. Yeom, H. S. Park and B. Y. Kim: IEEE Photonics Technol. Lett. 16 (2004) 1313.CrossRefGoogle Scholar
  11. 11.
    11) F. Abrishamian, Y. Nakai, S. Sato and M. Imai: Tech. Dig. 10th Optoelectronics and Communications Conf., Seoul, 2005, 7P-065.Google Scholar
  12. 12.
    12) T. A. Birks, P. St. J. Russell and D. O. Culverhouse: J. Lightwave Technol. 14 (1996) 2519.CrossRefADSGoogle Scholar
  13. 13.
    13) F. Abrishamian, Y. Nakai, S. Sato and M. Imai: Tech. Rep. IEICE, OCS2004-70, OFT2004-33 (2004) p. 13.Google Scholar
  14. 14.
    14) T. Lin, Y. Furuumi, M. Imai, Y. Tsuji and M. Koshiba: Trans. IEICE Electron. J82-C-I (1999) 587 [in Japanese].Google Scholar

Copyright information

© The Optical Society of Japan 2005

Authors and Affiliations

  • Fatemeh Abrishamian
    • 1
  • Shinya Sato
    • 1
  • Masaaki Imai
    • 1
  1. 1.Department of Electrical and Electronic EngineeringMuroran Institute of TechnologyMuroran, HokkaidoJapan

Personalised recommendations