Optical Review

, Volume 12, Issue 4, pp 271–273

Numerical Analysis of Photoinduced Surface Relief Grating Formation by Particle Method

  • Daisuke Barada
  • Takashi Fukuda
  • Masahide Itoh
  • Toyohiko Yatagai
Original Paper

Abstract

The time evolution of photoinduced surface relief grating formation on azobenzene polymer films is analyzed by particle method for fluid mechanics. The surface relief grating is grown by using two beams interference with various polarization states numerically and compared with experimental results. The force acted on the dipole by electromagnetic field and surface force are considered as the driving force for photoinduced mass transport. The improved surface tension model is proposed in order to calculate curvature coefficient. The numerical results are coincided with experimental results qualititatively.

Key words

azobenzene polymer photoinduced surface relief surface relief grating particle method electromagnetic-induced particle transport method viscous fluid model electromagnetic force 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. L. Rochon, E. Batalla and A. L. Natansohn: Appl. Phys. Lett. 66 (1995) 136.CrossRefGoogle Scholar
  2. 2.
    D. Y. Kim, L. Li, S. K. Tripathy and J. Kumar: Appl. Phys. Lett. 66 (1995) 1166.CrossRefGoogle Scholar
  3. 3.
    T. Fukuda, K. Sumaru, T. Kimura, H. Matsuda, Y. Narita, T. Inoue and F. Sato: Jpn. J. Appl. Phys. 40 (2001) L900.CrossRefGoogle Scholar
  4. 4.
    T. Fukuda, H. Matsuda, T. Shiraga, T. Kimura, M. Kato, N. Viswanathan, J. Kumar and S. K. Tripathy: Macromolecules 33 (2000) 4220.CrossRefGoogle Scholar
  5. 5.
    K. Munakata, K. Harada, N. Yoshikawa, M. Itoh, S. Umegaki and T. Yatagai: Opt. Rev. 6 (1999) 518.Google Scholar
  6. 6.
    K. Munakata, K. Harada, M. Itoh, S. Umegaki and T. Yatagai: Opt. Commun. 191 (2001) 15.CrossRefGoogle Scholar
  7. 7.
    K. Munakata, K. Harada, H. Anji, M. Itoh and T. Yatagai: Opt. Lett. 26 (2001) 4.Google Scholar
  8. 8.
    K. Harada, H. Inoue, M. A. El-Morsy, M. Itoh and T. Yatagai: Jpn. J. Appl. Phys. 41 (2002) 1851.CrossRefGoogle Scholar
  9. 9.
    C. J. Barrett, P. L. Rochon and A. L. Natansohn: J. Chem. Phys. 109 (1998) 1505.CrossRefGoogle Scholar
  10. 10.
    C. J. Barrett, A. L. Natansohn and P. L. Rochon: J. Phys. Chem. 100 (1996) 8836.CrossRefGoogle Scholar
  11. 11.
    P. Lefin, C. Fiorini and J. M. Nunzi: Opt. Mater. 9 (1998) 323.CrossRefGoogle Scholar
  12. 12.
    T. G. Pedersen, P. M. Johansen, N. C. R. Holme and P. S. Ramanujam: Phys. Rev. Lett. 80 (1998) 89.CrossRefGoogle Scholar
  13. 13.
    J. Kumar, L. Li, X. L. Jiang, D. Y. Kim, T. S. Lee and S. Tripathy: Appl. Phys. Lett. 72 (1998) 2096.CrossRefGoogle Scholar
  14. 14.
    D. Barada, M. Itoh and Y. Tatagai: J. Appl. Phys. 96 (2004) 4204.CrossRefGoogle Scholar
  15. 15.
    M. J. Kim, J. Kumar and D. Y. Kim: Adv. Mater. 15 (2003) 2005.CrossRefGoogle Scholar
  16. 16.
    S. Koshizuka and Y. Oka: Nucl. Sci. Eng. 123 (1996) 421.Google Scholar

Copyright information

© The Optical Society of Japan 2005

Authors and Affiliations

  • Daisuke Barada
    • 1
  • Takashi Fukuda
    • 2
    • 3
  • Masahide Itoh
    • 1
  • Toyohiko Yatagai
    • 1
    • 2
  1. 1.Institute of Applied PhysicsUniversity of TsukubaTsukuba, IbarakiJapan
  2. 2.Special Research Project on NanoscienceUniversity of TsukubaTsukuba, IbarakiJapan
  3. 3.Photonics Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)Tsukuba, IbarakiJapan

Personalised recommendations