Advertisement

Optical Review

, Volume 11, Issue 2, pp 76–81 | Cite as

Comparative Evaluation of Spectral Transforms for Multispectral Image Coding in Terms of Color Degradation

  • Yuri Murakami
  • Hiroyuki Manabe
  • Takashi Obi
  • Masahiro Yamaguchi
  • Nagaaki Ohyama
Information Optics

Abstract

Recently, multispectral images have been utilized for high fidelity color reproduction through visual telecommunication systems and its compression schemes have been required. However multispectral image coding considering color degradation has not been established. This article presents a comparison of four spectral transforms presented before to find out which transform is more suitable to a spectral decorrelation scheme in transform coding of multispectral images. Transforms dealt with in this paper are Karhunen-Loeve transform (KLT), weighted KLT (WKLT), one mode analysis (OMA) and a transform realizing compatibility to the conventional color systems, latter three of which are designed to represent spectral reflectance functions with small number of coefficients having small colorimetric errors. Through the theoretical and experimental comparisons, it is found that WKLT and OMA reduced colorimetric error compared to the others, where OMA is suitable when the rendering illuminations in the color reproduction can be assumed in advance and WKLT is applicable to other situations.

Key words

multispectral image transform coding spectral transform color reproduction KLT decorrelation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Ohya, T. Obi, M. Yamaguchi, N. Ohyama and Y. Komiya: Proc. SPIE 3335 (1998) 263.ADSCrossRefGoogle Scholar
  2. 2.
    H. Haneishi, T. Hasegawa, A. Hosoi, Y. Yokoyama, N. Tsumura and Y. Miyake: Appl. Opt. 39 (2000) 6621.ADSCrossRefGoogle Scholar
  3. 3.
    B. Hill: Proc. SPIE 4421 (2002) 481.ADSCrossRefGoogle Scholar
  4. 4.
    M. Yamaguchi, T. Teraji, K. Osawa, T. Uchiyama, H. Motomura, Y. Murakami and N. Ohyama: Proc. SPIE 4663 (2002) 15.CrossRefADSGoogle Scholar
  5. 5.
    J. A. Saghri, A. G. Tescher and J. T. Reagan: Proc. 27th Asilomar Conf. Signals, Systems & Computers (IEEE, Pacific Grove CA, 1993) p. 1342.Google Scholar
  6. 6.
    T. S. Wilkinson, J. H. Kasner, B. V. Brower and S. S. Shen: Proc. SPIE 4472 (2001) 224.ADSCrossRefGoogle Scholar
  7. 7.
    W. Kondou, K. Miyata, H. Haneishi and Y. Miyake: Proc. Int. Symp. Multispectral Imaging and Color Reproduction for Digital Archives (1999) p. 143.Google Scholar
  8. 8.
    J. Parkkinen, M. Hauta-Kasari, A. Kaarna, J. Lehtonen, P. Koponen and T. Jaaskelainen: Proc. 2nd Int. Symp. Multispectral Imaging and High Accurate Color Reproduction (2000) p. 49.Google Scholar
  9. 9.
    Y. Murakami, H. Manabe, T. Obi, M. Yamaguchi and N. Ohyama: Proc. 9th Color Imaging Conf. (IS&T, Scottsdale AZ, 2001) p. 68.Google Scholar
  10. 10.
    D. H. Marimont and B. A. Wandell: J. Opt. Soc. Am. A 9 (1992) 1905.ADSCrossRefGoogle Scholar
  11. 11.
    Th. Keusen: J. Imaging Sci. Technol. 40 (1996) 510.CrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2004

Authors and Affiliations

  • Yuri Murakami
    • 1
    • 3
  • Hiroyuki Manabe
    • 2
  • Takashi Obi
    • 2
    • 3
  • Masahiro Yamaguchi
    • 2
    • 3
  • Nagaaki Ohyama
    • 1
    • 3
  1. 1.Frontier Collaborative Research CenterTokyo Institute of TechnologyYokohamaJapan
  2. 2.Imaging Science & Engineering LaboratoryTokyo Institute of TechnologyYokohamaJapan
  3. 3.Telecommunications Advancement Organization of JapanAkasaka Natural Vision Research CenterTokyoJapan

Personalised recommendations