Optical Review

, Volume 7, Issue 5, pp 426–431 | Cite as

Topographic Distribution of Photon Measurement Density Functions on the Brain Surface by Hybrid Radiosity-Diffusion Method

  • Muneo Ono
  • Yoshihiko Kashio
  • Martin Schweiger
  • Hamid Dehghanim
  • Simon R. Arridge
  • Michael Firbank
  • Eiji Okada
Regular Papers

Abstract

An accurate modelling of light propagation in the head is required to develop an algorithm to reconstruct the image of brain activity. Most previous studies have calculated the light propagation in two dimensional models because of their advantage in computation time and memory requirement over three dimensional models. However, in topographic imaging, the sensitivity distribution in the cross sections parallel to the brain surface which cannot be obtained from a two dimensional model is most important to reconstruct the image. In this study, the light propagation in three dimensional adult head models is calculated by finite element method and hybrid radiosity-diffusion method. The light propagation in the adult head is strongly affected by the non-scattering cerebrospinal fluid (CSF) layer surrounding the brain. The sensitive area is shifted toward the deeper region, and is spread around the CSF layer. The intensely sensitive region on the brain surface is broadly distributed between the source and detector. However, the sensitive region does not penetrate into the deeper part of the brain.

Key words

near infrared spectroscopy diffusion equation finite element method hybrid radiosity diffusion model topographic imaging photon measurement density function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Wyatt, D. T. Delpy, M. Cope, S. Wray and E. O. R. Reynolds: Lancet 8515 (1986) 1063.CrossRefGoogle Scholar
  2. 2.
    M. Ferrari, D. A. Wilson, D. F. Hanley, J. F. Hartmann, M. C. Rogers and R. J. Traystman: Am. J. Physiol. 256 (1989) 1493.Google Scholar
  3. 3.
    N. B. Hampson, E. M. Camporesi, B. W. Stolp, R. E. Moon, J. E. Shook, J. A. Griebel and C. A. Piantadoshi: J. Appl. Phys. 69 (1990) 907.Google Scholar
  4. 4.
    A. D. Edwards, G. C. Brown, M. Cope, J. S. Wyatt, D. C. McCormick, S. C. Roth, D. T. Delpy and E. O. R. Reynolds: J. Appl. Phys. 71 (1991) 1907.Google Scholar
  5. 5.
    Y. Hoshi and M. Tamura: Neurosci. Lett. 150 (1993) 5.CrossRefPubMedGoogle Scholar
  6. 6.
    M. S. Patterson, B. Chance and B. C. Wilson: Appl. Opt. 28 (1989) 2331.Google Scholar
  7. 7.
    S. R. Arridge, M. Cope and D. T. Delpy: Phys. Med. Biol. 37 (1992) 1531.CrossRefPubMedGoogle Scholar
  8. 8.
    W. Cui and L. E. Ostrander: IEEE Trans. Biomed. Eng. BME-39 (1992) 194.CrossRefGoogle Scholar
  9. 9.
    S. R. Arridge, M. Schweiger, M. Hiraoka and D. T. Delpy: Med. Phys. 20 (1993) 299.CrossRefPubMedGoogle Scholar
  10. 10.
    M. Schweiger, S. R. Arridge, M. Hiraoka and D. T. Delpy: Med. Phys. 22 (1995) 1779.CrossRefPubMedGoogle Scholar
  11. 11.
    S. Takahashi and Y. Yamada: OSA TOPS 2 (1998) 2.Google Scholar
  12. 12.
    E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope and D. T. Delpy: Appl. Opt. 36 (1997) 21.CrossRefGoogle Scholar
  13. 13.
    M. Firbank, E. Okada and D. T. Delpy: Neuroimage 8 (1998) 69.CrossRefPubMedGoogle Scholar
  14. 14.
    M. Firbank, M. Hi raoka, M. Schweiger and D. T. Delpy: Phys. Med. Biol. 41 (1996) 767.CrossRefPubMedGoogle Scholar
  15. 15.
    S. R. Arridge, H. Dehghani, M. Schweiger and E. Okada: Med. Phys. 27 (2000) 252.CrossRefPubMedGoogle Scholar
  16. 16.
    M. Schweiger and S. R. Arridge: Appl. Opt. 37 (1995) 7419.Google Scholar
  17. 17.
    S. R. Arridge and J. C. Hebden: Phys. Med. Biol. 42 (1997) 841.CrossRefPubMedGoogle Scholar
  18. 18.
    A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi and H. Koizumi: Med. Phys. 22 (1995) 1997.CrossRefPubMedGoogle Scholar
  19. 19.
    H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki and R. Kennan: J. Biomed. Opt. 4 (1999) 403.CrossRefGoogle Scholar
  20. 20.
    Y. Yamashita, A. Maki and H. Koizumi: J. Biomed. Opt. 4 (1999) 414.CrossRefGoogle Scholar
  21. 21.
    C. R. Simpson, M. Kohl, M. Essenpreis and M. Cope: Phys. Med. Biol. 43 (1998) 2465.CrossRefPubMedGoogle Scholar
  22. 22.
    M. Firbank, M. Hiraoka, M. Essenpreis and D. T. Delpy: Phys. Med. Biol. 38 (1993) 503.CrossRefPubMedGoogle Scholar
  23. 23.
    P. van der Zee, M. Essenpreis and D. T. Delpy: Proc. SPIE 1888 (1993) 454.Google Scholar
  24. 24.
    R. A. J. Groenhuis, H. A. Ferwada and J. J. Ten Bosch: Appl. Opt. 22 (1983) 2456.Google Scholar
  25. 25.
    S. R. Arridge: Appl. Opt. 34 (1995) 7395.Google Scholar
  26. 26.
    S. R. Arridge and M. Schweiger: Appl. Opt. 34 (1995) 8026.Google Scholar
  27. 27.
    E. Okada, M. Schweiger, S. R. Arridge, M. Firbank and D. T. Delpy: Appl. Opt. 35 (1996) 3362.Google Scholar

Copyright information

© The Optical Society of Japan 2000

Authors and Affiliations

  • Muneo Ono
    • 1
  • Yoshihiko Kashio
    • 1
  • Martin Schweiger
    • 2
  • Hamid Dehghanim
    • 3
  • Simon R. Arridge
    • 2
  • Michael Firbank
    • 4
  • Eiji Okada
    • 1
  1. 1.Department of Electronics and Electrical EngineeringKeio UniversityYokohamaJapan
  2. 2.Department of Computer ScienceUniversity College LondonUK
  3. 3.Department of Medical Physics and BioengineeringUniversity College LondonUK
  4. 4.University Department of RadiologyImaging Laboratory, Royal Victoria InfirmaryUK

Personalised recommendations