Advertisement

Optical Review

, Volume 7, Issue 5, pp 402–405 | Cite as

An Approach to Optical Reflection Tomography along the Geometrical Thickness

  • Koji Yoden
  • Masato Ohmi
  • Yasuhito Ohnishi
  • Naomi Kunizawa
  • Masamitsu HarunaEmail author
Review

Abstract

We propose and demonstrate a novel optical reflection tomography along the geometrical thickness. This technique is based on simultaneous measurement of refractive index n and thickness t of a sample using the combination of a low coherence interferometer and confocal optics. The interferometer provides optical coherence tomography (OCT) of the dimension of the optical thickness (=n × t) along the optical axis, while the confocal optics gives us another type of reflection tomography, having the thickness dimension of nearly t/n along the optical axis. This sort of tomography can be called confocal reflection tomography (CRT) and has not yet been demonstrated, to our knowledge. Simple image processing of OCT and CRT results in the desired reflection tomographic image, showing two-dimensional refractive index distribution along the geometrical thickness.

Key words

optical tomography low coherence interferometry confocal optics optical coherent tomography confocal reflection tomography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto: Science 254 (1991) 1178.PubMedGoogle Scholar
  2. 2.
    G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson and J. G. Fujimoto: Opt. Lett. 21 (1996) 1408.Google Scholar
  3. 3.
    G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern and J. G. Fujimoto: Opt. Lett. 21 (1996) 543.Google Scholar
  4. 4.
    G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee and J. G. Fujimoto: Opt. Lett. 20 (1995) 2258.Google Scholar
  5. 5.
    T. Fukano and I. Yamaguchi: Opt. Lett. 21 (1996) 1942.Google Scholar
  6. 6.
    M. Ohmi, T. Shiraishi, H. Tajiri and M. Haruna: Opt. Rev. 4 (1997) 507.Google Scholar
  7. 7.
    A. K. Dunn, C. Smithpeter, A. J. Welch and R. Richards-Kortum: Appl. Opt. 35 (1996) 3441.Google Scholar
  8. 8.
    M. Haruna, M. Ohmi, T. Mitsuyama, H. Tajiri, H. Maruyama and M. Hashimoto: Opt. Lett. 23 (1998) 966.Google Scholar
  9. 9.
    S. Inoue, H. Maruyama, T. Mitsuyama, M. Ohmi, K. Ihara and M. Haruna: Proc. 13th International Conference on Optical Fiber Sensors, Kyongju, Korea (1999) p. 124.Google Scholar
  10. 10.
    M. Born and E. Wolf: Principle of Optics, (Pergamon, New York, 1970) 4th ed., Sects. 1.3.4 and 1.5.1.Google Scholar
  11. 11.
    e.g., B. L. Danielson and C. Y. Boisrobert: Appl. Opt. 30 (1991) 2975.Google Scholar
  12. 12.
    H. Maruyama, S. Inoue, M. Ohmi, K. Ihara, S. Nakagawa and M. Haruna: Proc. SPIE 3740 (1999) 26.Google Scholar
  13. 13.
    H. Maruyama, T. Mitsuyama, M. Ohmi and M. Haruna: Opt. Rev. 7 (in press).Google Scholar
  14. 14.
    T. R. Corle, C. H. Chou and G. S. Kino: Opt. Lett. 11 (1986) 770.Google Scholar

Copyright information

© The Optical Society of Japan 2000

Authors and Affiliations

  • Koji Yoden
    • 1
  • Masato Ohmi
    • 1
  • Yasuhito Ohnishi
    • 1
  • Naomi Kunizawa
    • 1
  • Masamitsu Haruna
    • 1
    Email author
  1. 1.School of Allied Health Sciences, Faculty of MedicineOsaka UniversityOsakaJapan

Personalised recommendations