Future-proofing hydrogeology by revising groundwater monitoring practice

Assurer l’avenir de l’hydrogéologie en révisant les pratiques de suivi des eaux souterraines

La hidrogeología del futuro por medio de la revisión de la práctica de monitoreo de las aguas subterráneas

修正地下水监测实施的面向未来的水文地质学

Hidrogeologia preparada Para o futuro revisando a prática de monitoramento de águas subterrâneas

Abstract

Groundwater is an important global resource and its sustainable use faces major challenges. New methods and advances in computational science could lead to much improved understanding of groundwater processes and subsurface properties. A closer look at current groundwater monitoring practice reveals the need for updates with a special focus on the benefits of high-frequency and high-resolution datasets. To future-proof hydrogeology, this technical note raises awareness about the necessity for improvement, provides initial recommendations and advocates for the development of universal guidelines.

Résumé

Les eaux souterraines constituent une ressource mondiale importante et leur utilisation durable fait face à des défis majeurs. De nouvelles méthodes et avancées en science de l’informatique pourraient conduire à une forte amélioration de la compréhension des processus hydrogéologiques et des propriétés du sous-sol. Un regard attentif aux pratiques actuelles de suivi des eaux souterraines révèle le besoin d’actualisations avec un accent particulier pour les bénéfices des ensembles de données à haute fréquence et haute résolution. Pour une hydrogéologie à l’épreuve du future, cet article sensibilise à la nécessité d’une amélioration, fournit de premières recommandations et préconise le développement de directives universelles.

Resumen

Las aguas subterráneas son un importante recurso a nivel mundial y su uso sostenible se enfrenta a grandes desafíos. Los nuevos métodos y avances en la ciencia computacional podrían conducir a una mejor comprensión de los procesos de las aguas subterráneas y las propiedades del subsuelo. Un análisis más detallado de las prácticas actuales de monitoreo de las aguas subterráneas revela la necesidad de una actualización que se centre especialmente en los beneficios de los conjuntos de datos de alta frecuencia y resolución. Para que la hidrogeología sea eficaz en el futuro, en este documento se plantea la necesidad de mejorar, se formulan recomendaciones iniciales y se promueve la elaboración de directivas universales.

摘要

地下水是重要的全球资源,其可持续利用面临重大挑战。 计算科学的新方法和新进展可能会促进对地下水过程和地下特性的深入认识。 仔细研究当前的地下水监测实践,发现需要进行更新,尤其要关注高频和高分辨率数据集的优势。 对于面向未来的水文地质学,本文提出了改进的必要性,提供了初步建议并倡导制定通用性的指南。

Resumo

A água subterrânea é um importante recurso global e seu uso sustentável enfrenta grandes desafios. Novos métodos e avanços na ciência computacional podem levar a uma compreensão muito melhor dos processos da água subterrânea e das propriedades de subsuperfície. Um olhar mais atento sobre a prática atual de monitoramento de águas subterrâneas revela a necessidade de atualizações com um foco especial nos benefícios dos conjuntos de dados de alta frequência e alta resolução. Para a hidrogeologia preparada para o futuro, este artigo aumenta a conscientização sobre a necessidade de melhorias, fornece recomendações iniciais e defende o desenvolvimento de diretrizes universais.

Novel approaches can tackle big challenges in hydrogeology

Our world faces many groundwater-related challenges (Alley 2002), for example over-extraction (e.g., Wada et al. 2010) and associated reduction in river base flow (e.g., de Graaf et al. 2019), land subsidence (e.g., Galloway and Burbey 2011), sea-water intrusion (e.g., Jiao and Post 2019) and deterioration of groundwater quality, due to arsenic (Rodriguez-Lado et al. 2013) or increasing nitrate concentrations (e.g. Hansen et al. 2017). This is further exacerbated by groundwaters’ slow response to anthropogenic and climatic impacts (i.e. long hydraulic memory; Cuthbert et al. 2019a) and competition for water for multiple purposes including domestic and stock supply, agriculture, thermal energy storage (e.g., Fleuchaus et al. 2018), resource mining and the environment (de Graaf et al. 2019).

Monitoring groundwater, for example by measuring heads, underpins virtually all groundwater flow and storage investigations (e.g., Rau et al. 2019) including the calibration of groundwater flow models (e.g., Hill and Tiedeman 2007) as well as ground-truth interpretations of large-scale indirect remote sensing or surface geophysical observations (e.g., Alley and Konikow 2015). Furthermore, groundwater monitoring is critical in times of unprecedented environmental change as the past is not necessarily a good predictor for the future. Monitoring is not only crucial to sustainable groundwater development (Gleeson et al. 2020), but also for mitigating groundwater-related disputes such as transboundary issues (Puri 2003) and conflicts that are anticipated to increase as a result of increasing demand and competition (Jarvis 2014).

Time series of groundwater levels provide insights into the pattern and dynamics of groundwater flow at local (e.g., McCallum et al. 2013), regional/subcontinental (e.g., Cuthbert et al. 2019b) and even the global scale (e.g., Fan et al. 2013). One of the biggest challenges for integrated water management is the lack of detailed knowledge of the distribution of subsurface hydrogeological properties at all scales (Bierkens 2015; Reinecke et al. 2019). Subsurface properties can be inferred by monitoring groundwater-level response to external stress—for example, the groundwater response to pumping has long been used to quantify important aquifer properties like hydraulic conductivity or storage coefficient (e.g., Kruseman and de Ridder 1990). However, ‘active’ aquifer testing, by applying an artificial hydraulic forcing (e.g. using an abstraction borehole), delivers localised results and requires substantial effort, which limits the number of locations that can be investigated in space and time (e.g., McMillan et al. 2019).

Decades of continuous head measurements are often required to capture changes in the balance of groundwater recharge and discharge fluxes (Cuthbert et al. 2019a) due to the delayed response of groundwater systems (Taylor and Alley 2001). However, heads also respond to natural forces on short (hours or days) timescales such as changes in stream stage (e.g., McCallum et al. 2013; Kelly et al. 2013); barometric fluctuations (Clark 1967; Rasmussen and Crawford 1997; Acworth et al. 2016); Earth, atmospheric and ocean tides (Bredehoeft 1967; Van Der Kamp and Gale 1983; Xue et al. 2016); rainfall loading at the surface (van der Kamp and Schmidt 2017); evapotranspiration by phreatophytes (e.g., Gribovszki et al. 2010); and earthquakes (e.g., Zhang et al. 2019).

High-frequency methods have been developed that exploit such natural variations—for example to calculate barometric response functions (BRF) that can be used to determine groundwater confinement (e.g., Rasmussen and Crawford 1997; Spane 2002). Further, groundwater response to Earth tides and atmospheric forcing can be used to determine confinement (Rahi and Halihan 2013; Acworth et al. 2017) as well as to quantify hydro-geomechanical properties—e.g. permeability, transmissivity, porosity, compressibility and even specific storage (e.g., Cutillo and Bredehoeft 2011). Recent research has illustrated that 1-mm instrument resolution is enough to capture and interpret the millimetres of variation in hydraulic head caused by atmospheric or Earth tide variations in confined systems (e.g., Acworth et al. 2016), known as Tidal Subsurface Analysis (TSA; McMillan et al. 2019). It is worth emphasising that such methods rely on high-resolution measurements where accuracy is secondary, as the sought information is in the relative changes.

These approaches have the immense advantage that they are ‘passive’, i.e. they do not require artificially applied forcing (such as pumping), but rather rely on ubiquitous natural influences (e.g., Xue et al. 2016). Such analysis only requires time series of (1) borehole water levels (or pressure heads), (2) atmospheric pressure, and (3) calculated Earth tides (McMillan et al. 2019). Measuring and interpreting such head changes provides a huge treasure trove for wide-spread analysis of subsurface processes and properties (McMillan et al. 2019). Due to the number of observation boreholes relative to dedicated pump testing boreholes, this has the potential to significantly increase spatial knowledge of subsurface hydrogeological properties and hence the characterisation of heterogeneity. To ensure robust application, analysed datasets must adhere to minimum requirements (outlined in section ‘How can hydrogeology be future-proofed through improved groundwater monitoring and archiving practice?’). It is noted that while high time and measurement resolution may not be required for traditional hydrogeological approaches (e.g., large-scale models), this becomes significant when applying passive techniques. Importantly, results from the latter can inform traditional approaches and improve the quality of interpretation.

Computational advances have brought about methods which can digest large quantities of data to solve challenging problems, derive new understanding or forecast future scenarios, for example using artificial intelligence approaches such as deep learning (Shen 2018). Groundwater databases have become increasingly available in recent decades due to increased accessibility over the Internet and decreased computer storage costs. This, in combination with the widespread availability of open-source data analysis software, offers much potential for data-driven discovery (Bergen et al. 2019). The authors propose that these new approaches should increasingly be applied to the large volume of existing hydrogeological datasets, so that improved groundwater-system understanding with high-frequency datasets and large spatial coverage can be derived at low effort and cost.

Unfortunately, there are many obstacles to taking advantage of existing datasets such as accessibility, and limited provision of meta-data to assess their quality, as well as insufficient time or sensor resolution and dataset duration. This technical note calls for a more holistic approach for collecting, managing and disseminating groundwater head datasets, with an emphasis on those collected at high frequency. This is not intended to be a comprehensive review or blueprint for groundwater monitoring in general terms, but specifically to address how the benefits of new high-frequency methods can be fully exploited in the future.

Observations from current practice

Traditionally, groundwater level measurements are performed manually by using water level meters, i.e. measuring tapes with a water-sensitive tip at the end (Freeman et al. 2004). It is recognized that much critically important historical information is held in data bases where measurements have only been taken using measuring tapes (dip meters) to centimetric accuracy at intervals that may have only been monthly or less frequently. Automated water-level recorders have been used for decades, but only since the 1980s have advances in electronics enabled the construction of automated pressure and distance sensors that are small enough to fit inside smaller (25-mm diameter) monitoring boreholes (e.g., Rosenberry 1990), and in the 1990s, further development allowed the storage of large amounts of data in the same devices. Using these sensors, water-level changes inside boreholes are measured and stored at programmable time intervals providing time series of pressure that can be converted to hydraulic heads. For this conversion, manual water level measurements are required to calibrate and check automated measurements (e.g., Rau et al. 2019).

The advent of automated measurement systems, in conjunction with data telemetry, enables increasingly comprehensive and cost-effective collection of groundwater data, even in remote locations (e.g., Rosenberry 1990; Post and von Asmuth 2013; Rau et al. 2019). Many countries such as the US Geological Survey (Freeman et al. 2004) or the Australian Government’s Bureau of Meteorology (BoM 2019), have developed guidelines for groundwater monitoring. The Internet has facilitated accessibility, and well-curated groundwater data from various providers are available to researchers and the general public. Some good examples for open access databases are:

  • The Global Groundwater Information System (GGIS) by the International Groundwater Resources Assessment Centre (IGRAC), which is financially supported by the Government of the Netherlands (IGRAC 2020).

  • The National Ground-Water Monitoring Network (NGWMN) operated by the US Geological Survey (USGS 2020) provides groundwater monitoring data from more than 9,000 wells in the USA.

  • The British Columbia Groundwater Wells and Aquifers application (Government of British Columbia 2020a), real-time hydrological data (Government of British Columbia 2020b) and the Provincial Groundwater Observation Well Network interactive map (Government of British Columbia 2020c) are examples of spatially displayed datasets for well location and real-time groundwater level data queries. Established in 1961, the Provincial Groundwater Observation Well Network program has been collecting hourly groundwater level readings reported to three decimal places for over 17 years.

  • The National Groundwater Information System (NGIS) and its mapping interface the Australian Groundwater Explorer operated by the Australian Government’s Bureau of Meteorology (BoM 2020) which contains information for 900,000 bores across the country and the National Collaborative Research Infrastructure Strategy (NCRIS) Groundwater Infrastructure Program (NCRIS 2020).

These examples summarize advances that testify to the giant steps that have been made during the last three decades. Nevertheless, practicalities often prevent data from achieving their full potential. Collectively, the authors have gained substantial field and data-interpretation experience while working for, and with, many academic institutions, consultancies and governing bodies around the world. In doing so, the authors have distilled the following observations:

  • Groundwater levels are not routinely collected at high frequency, even for limited time periods, at long-term monitoring locations. Some monitoring is associated with a finite project period and there are few known groundwater monitoring sites at which strategic long-term high-frequency monitoring is conducted.

  • The choice of an appropriate sampling frequency is difficult to make, usually due to a lack of knowledge about the dynamics of groundwater processes for a particular location. Further, the relationship between the internal clock in automated devices (which are prone to clock drift) and a common time base (e.g. time zone and daylight saving time setting) is often neglected which leads to post-processing confusion, for example spurious offsets between barometric pressure or ocean tides and groundwater records, which can thwart advanced interpretation of processes and properties when using high-frequency methods or when interpreting multiple data sets together.

  • Using an established and accurate vertical reference for groundwater head records is crucial when interpreting multiple datasets. Practitioners often simply reference to ground level or the top of the borehole casing and neglect the accuracy of this information. Please refer to Rau et al. (2019) for a detailed discussion of this issue.

  • In the trade-off between pressure transducer range (maximum limits) and resolution (smallest resolvable signals), practitioners seem to prefer maximizing range as it allows for greater versatility (less chance of failure due to over-pressurization and a wider range of deployments). In addition, some practitioners report and archive datasets rounded to the nearest centimetre thereby mistaking the limited absolute accuracy of manual measurements with the high relative accuracy of automated measurements. This leads to a loss of information content such as the often-subtle water level variations caused by Earth or atmospheric tide influences and prevents the immense benefit of their interpretation.

  • Converting pressure time series from automated pressure transducers into hydraulic head records requires regular manual measurements (e.g., Freeman et al. 2004; Post and von Asmuth 2013). Systematic and regular borehole inspections are further required to ensure bore integrity and that the water level inside the well is a truthful representation of the pressure head in the aquifer. However, regular manual measurement of groundwater levels in spatially distributed monitoring bores is being deprioritised because it requires effort by a human operator and therefore has a significant financial cost. Because there are often little spatial and temporal overlap between manual and automated measurement, groundwater monitoring bores often have insufficient evaluation of automatically measured water levels.

  • Data units vary across countries (e.g., metric or imperial) and are sometimes not explicitly stated within datasets. This can create confusion when converting between different unit systems.

  • Hydraulic head measurements are rarely corrected for density effects, which is crucial in areas with brackish or saline groundwater (Post and von Asmuth 2013). As part of standard practice, fluid electrical conductivity and temperature should always be measured as a proxy for density, and corrections to the head made, if required.

  • Groundwater is monitored by many different stakeholders with varying objectives, including private companies. Datasets are often archived separately, have yet to make their way into accessible databases or are not made accessible, e.g. archived by government agencies or private companies. Obtaining information about monitoring locations as well as datasets therefore requires significant search, communication and quality assurance efforts.

  • Auxiliary datasets are not commensurate with available water-level time series. For example, barometric pressure or rainfall records may be required to interpret datasets but may not be available at all or not at the required spatial or temporal resolution. Typically, such data are collected and maintained by different institutions, which again increases interpretation efforts.

  • Perhaps because of a lack of market push, many standard pressure transducers do not measure to subcentimetre resolution (Rau et al. 2019). During procurement, affordability is all too often favoured over performance, even though low-end pressure transducers are known to have operational issues (e.g., resolution, accuracy, clock accuracy, longevity, etc.) that limit interpretability of the data they collect.

  • Quality assurance (QA) and quality control (QC) procedures for data stored in databases are not always transparent and may lack meta-data descriptions, thus making it unclear for what purpose the data are suited.

  • Groundwater monitoring is organised differently around the world. While the stakeholders can roughly be categorised into private, industry, government and research (Fig. 1), the responsibilities for and expectations of groundwater monitoring vary greatly. Consequently, defining a universally applicable best practice is a challenging task.

Fig. 1
figure1

General overview of the groundwater-monitoring and data-archiving workflow. The development of new universal guidelines and adherence to the *FAIR principles (findable, accessible, interoperable, and reusable; Wilkinson et al. 2016) for groundwater data is needed to gain maximum benefit of recent methodological advances and future opportunities

How can hydrogeology be future-proofed through improved groundwater monitoring and archiving practice?

New methodological advances could bring about improved process understanding from old monitoring datasets, but the points listed previously illustrate some of the difficulties typically encountered with this. To remove these obstacles, there is a need for developing and adopting universal standard practice for the future, when the availability of new data processing and interpretation methods will add even further value to groundwater datasets. Figure 1 shows a conceptual summary of the workflow in groundwater monitoring highlighting the limitations in current practices and a pathway to future opportunities.

The authors call for an update of existing groundwater monitoring and archiving practice to accelerate process understanding at different spatial and temporal scales. More specifically, the following recommendations are proposed:

  1. 1.

    For a successful application of high-frequency methods, a dataset must fulfil the following criteria:

    1. a.

      The minimum required measurement resolution is 1-mm head equivalent, which is necessary to accurately capture the subtle influences from atmospheric pressure changes or Earth tides. Importantly, good instrument resolution is more important than the overall accuracy of the dataset as is usually the focus when calculating head gradients. Measurements must be curated, preserved and archived at their original resolution (at least millimetres or three significant digits).

    2. b.

      The minimum sampling frequency in cycles per day (cpd) depends on the desired analysis as follows:

      • Barometric response functions (BRFs): Like aquifer testing, the minimum sampling period will depend on the hydraulic diffusivity of the aquifer (faster response requires higher time resolution but shorter record duration). However, in most cases a sampling frequency of one per hour is enough to establish confinement or to correct heads for barometric and Earth tide influences under confined conditions. A minimum record duration of 5 days is recommended, to capture the response under low hydraulic diffusivity conditions.

      • Tidal Subsurface Analysis (TSA): The minimum sampling frequency must be larger than twice the Nyquist frequency required to capture the highest dominant Earth tide influence (S2 tidal component at 2 cpd). This would lead to sampling every 6 h (or at 4 cpd). However, to accurately establish the amplitude of the S2 tidal component at 2 cpd, it is recommended to double that frequency to sample every 3 h (or at 8 cpd). Similarly, the minimum record duration to confidently distinguish between the dominant Earth tide frequencies M2 (at 1.93227 cpd) and S2 (at 2.00 cpd) can be derived by applying the Nyquist theorem to the frequency difference between both components resulting in a minimum duration of 60 days.

    1. c.

      A good compromise allowing application of both approaches is to sample hourly for a minimum duration of 60 days.

  2. 2.

    Encourage manufacturers to update sensor resolution—for example, using an industry standard 16-bit analogue-to-digital-converter (ADC) microchip could theoretically deliver a 0.7-mm resolution with a measurement range of 50 m. This would allow the same device to capture large drawdowns as well as subtle changes caused by Earth tides and atmospheric pressure changes.

  3. 3.

    Regular field trips usually dedicated to manual water-level measurements, monitoring infrastructure and instrument maintenance should include the task to coordinate the relocation of the generally limited number of automated monitoring devices around a catchment (or monitoring jurisdiction) so that records satisfying the minimal requirements for high-frequency methods (hourly sampling frequency with 60-day duration) can be established for each location. The resulting datasets should be analysed, and the results would lead to a much better decision about which locations to focus the limited resources on for strategic long-term monitoring.

  4. 4.

    Increase the availability of measurements and meta-data (Taylor and Alley 2001), especially for government-funded groundwater monitoring efforts, by migrating discrete datasets into centralized and publicly available data-storage infrastructure.

  5. 5.

    A requirement to provide readily available, standardized meta-data information about instrumentation used, i.e. sensor details, sensing types (vented/nonvented), brand, range, resolution, calibration records, an assessment of the measurement errors and data units.

  6. 6.

    Regular synchronisation of the internal clocks of automated devices (and records of observed clock drift for recorded time-series) and conversion to a generic time reference. The authors recommend Coordinated Universal Time (UTC) as a time base to allow for cross-referencing with other influences on groundwater heads archived elsewhere such as gravity (Earth tides) or seismic activity (earthquakes).

  7. 7.

    Implementation of the FAIR principles (findable, accessible, interoperable, and reusable) when archiving datasets (Wilkinson et al. 2016). This includes providing data access via standardised application programming interfaces (APIs) to circumvent onerous download and formatting issues.

  8. 8.

    The need for full appreciation of the difficulty and skill requirements for accurate head measurements (including installations, calibration, conversion and standard interpretation) and with that, the provision of appropriately trained technical staff.

Recent advances in open-source software development facilitate the widespread use of sophisticated analysis techniques (e.g., Bakker and Schaars 2019). Further, the capabilities of cloud-based big data analysis (Hayley 2017) such as deep or machine learning are rapidly progressing (Shen 2018; Bergen et al. 2019) and will inevitably play a major role in the discipline of hydrogeology. Such developments will, without doubt, lead to improved knowledge of groundwater system functioning, deliver much increased spatiotemporal understanding of subsurface resources and therefore also progress sustainable groundwater management efforts. However, newly developed methods will always rely on, and benefit from, high-resolution and quality assured time-series data from accessible sources. The authors believe that implementing these recommendations would help to future-proof hydrogeology by ensuring that currently acquired datasets enable maximum benefit in future interpretations.

The foregoing views and recommendations are reinforced by the recent publication of a special issue of Hydrological Sciences Journal called “Hydrological data: opportunities and barriers”, which focuses on hydrometeorology and river basin data (Cudennec et al. 2020). International initiatives focusing on innovation and data sharing in hydrology more broadly have also emerged, like the World Meteorological Organisation’s HydroHub (WMO 2020). It is imperative that the hydrogeological community is represented within these initiatives as they can be instrumental in driving forward the changes envisaged in this article. A good start would be the coordinated development of groundwater monitoring guidelines and data requirements by an international community of experts.

References

  1. Acworth RI, Halloran LJS, Rau GC, Cuthbert MO, Bernardi TL (2016) An objective frequency domain method for quantifying confined aquifer compressible storage using earth and atmospheric tides. Geophys Res Lett 43:11611–671678. https://doi.org/10.1002/2016G

    Article  Google Scholar 

  2. Acworth RI, Rau GC, Halloran LJS, Timms WA (2017) Vertical groundwater storage properties and changes in confinement determined using hydraulic head response to atmospheric tides. Water Resour Res 53:2983–2997. https://doi.org/10.1002/2016WR020311

    Article  Google Scholar 

  3. Alley WM (2002) Flow and storage in groundwater systems. Science 296(5575):1985–1990. https://doi.org/10.1126/science.1067123L071328

    Article  Google Scholar 

  4. Alley WM, Konikow LF (2015) Bringing GRACE down to earth. Groundwater 53:826–829. https://doi.org/10.1111/gwat.12379

    Article  Google Scholar 

  5. Bakker M, Schaars F (2019) Solving groundwater flow problems with time series analysis: you may not even need another model. Groundwater 57:826–833. https://doi.org/10.1111/gwat.12927

    Article  Google Scholar 

  6. Bergen KJ, Johnson PA, de Hoop MV, Beroza GC (2019) Machine learning for data-driven discovery in solid earth geoscience. Science. https://doi.org/10.1126/science.aau0323

  7. Bierkens MFP (2015) Global hydrology 2015: state, trends, and directions. Water Resour Res 51:4923–4947. https://doi.org/10.1002/2015WR017173

    Article  Google Scholar 

  8. Bredehoeft JD (1967) Response of well-aquifer systems to earth tides. J Geophys Res 72:3075–3087. https://doi.org/10.1029/JZ072i012p03075

    Article  Google Scholar 

  9. BoM (2019) National industry guidelines for hydrometric monitoring. Water Monitoring Standardisation Technical Committee. http://www.bom.gov.au/water/standards/niGuidelinesHyd.shtml Accessed September 2020

  10. BoM (2020) Groundwater information. http://www.bom.gov.au/water/groundwater/. Accessed September 2020

  11. Clark WE (1967) Computing the barometric efficiency of a well. J Hydraul Div 93:93–98

    Google Scholar 

  12. Cudennec C, Lins H, Uhlenbrook S, Arheimer B (2020) Editorial: towards FAIR and SQUARE hydrological data. Hydrol Sci J 65:681–682. https://doi.org/10.1080/02626667.2020.1739397

    Article  Google Scholar 

  13. Cuthbert MO, Gleeson T, Moosdorf N, Befus KM, Schneider A, Hartmann J, Lehner B (2019a) Global patterns and dynamics of climate–groundwater interactions. Nat Clim Chang 9:137–141. https://doi.org/10.1038/s41558-018-0386-4

    Article  Google Scholar 

  14. Cuthbert MO, Taylor RG, Favreau G, Todd MC, Shamsudduha M, Villholth KG, MacDonald AM, Scanlon BR, Kotchoni DOV, Vouillamoz JM, Lawson FMA, Adjomayi PA, Kashaigili J, Seddon D, Sorensen JPR, Ebrahim GY, Owor M, Nyenje PM, Nazoumou Y, Goni I, Ousmane BI, Sibanda T, Ascott MJ, Macdonald DMJ, Agyekum W, Koussoubé Y, Wanke H, Kim H, Wada Y, Lo MH, Oki T, Kukuric N (2019b) Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572:230–234. https://doi.org/10.1038/s41586-019-1441-7

    Article  Google Scholar 

  15. Cutillo PA, Bredehoeft JD (2011) Estimating aquifer properties from the water level response to earth tides. Ground Water 49:600–610. https://doi.org/10.1111/j.1745-6584.2010.00778.x

    Article  Google Scholar 

  16. de Graaf IEM, Gleeson T, van Beek LPH, Sutanudjaja EH, Bierkens MFP (2019) Environmental flow limits to global groundwater pumping. Nature 574:90–94. https://doi.org/10.1038/s41586-019-1594-4

    Article  Google Scholar 

  17. Fan Y, Li H, Miguez-Macho G (2013) Global patterns of groundwater table depth. Science 339:940–943. https://doi.org/10.1126/science.1229881

    Article  Google Scholar 

  18. Fleuchaus P, Godschalk B, Stober I, Blum P (2018) Worldwide application of aquifer thermal energy storage: a review. Renew Sust Energ Rev 94:861–876. https://doi.org/10.1016/j.rser.2018.06.057

    Article  Google Scholar 

  19. Freeman LA, Carpenter MC, Rosenberry DO, Rousseau JP, Unger R, McLean JS (2004) Use of submersible pressure transducers in water-resources investigations. USGS, Reston, VA

    Google Scholar 

  20. Galloway DL, Burbey TJ (2011) Review: regional land subsidence accompanying groundwater extraction. Hydrogeol J 19:1459–1486. https://doi.org/10.1007/s10040-011-0775-5

    Article  Google Scholar 

  21. Gleeson T, Cuthbert M, Ferguson G, Perrone D (2020) Global groundwater sustainability, resources, and systems in the Anthropocene. Annu Rev Earth Planet Sci. https://doi.org/10.1146/annurev-earth-071719-055251

    Article  Google Scholar 

  22. Government of British Columbia (2020a) Groundwater wells and aquifers application https://apps.nrs.gov.bc.ca/gwells/. Accessed September 2020

  23. Government of British Columbia (2020b) Aquarius WebPortal. http://aqrt.nrs.gov.bc.ca. Accessed September 2020

  24. Government of British Columbia (2020c) Provincial Groundwater Observation Well Network. https://www2.gov.bc.ca/gov/content/environment/air-land-water/water/groundwater-wells-aquifers/groundwater-observation-well-network. Accessed September 2020

  25. Gribovszki Z, Szilágyi J, Kalicz P (2010) Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation: a review. J Hydrol 385:371–383. https://doi.org/10.1016/j.jhydrol.2010.02.001

    Article  Google Scholar 

  26. Hansen B, Thorling L, Schullehner J, Termansen M, Dalgaard T (2017) Groundwater nitrate response to sustainable nitrogen management. Sci Rep 7:8566. https://doi.org/10.1038/s41598-017-07147-2

    Article  Google Scholar 

  27. Hayley K (2017) The present state and future application of cloud computing for numerical groundwater modeling. Groundwater 55:678–682. https://doi.org/10.1111/gwat.12555

    Article  Google Scholar 

  28. Hill MC, Tiedeman C (2007) Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. In: Effective groundwater model calibration. Wiley, Hoboken, NJ, pp 427–455

    Chapter  Google Scholar 

  29. IGRAC (2020) Global Groundwater Information System (GGIS). International Groundwater Resources Assessment Centre. https://www.un-igrac.org/global-groundwater-information-system-ggis. Accessed September 2020

  30. Jarvis WT (2014) Contesting hidden waters: conflict resolution for groundwater and aquifers. CRC, Boca Raton, FL

  31. Jiao J, Post V (2019) Coastal hydrogeology. Cambridge University Press, Cambridge, UK

  32. Kelly BFJ, Timms WA, Andersen MS, McCallum AM, Balkers RS, Smith R, Rau GC, Badenhop A, Ludowici K, Acworth RI (2013) Aquifer heterogeneity and response time: the challenge for groundwater management. Crop Pasture Sci 64:1141–1154. https://doi.org/10.1071/CP13084

    Article  Google Scholar 

  33. Kruseman GP, de Ridder NA (1990) Analysis and evaluation of pumping test data. International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands

  34. McCallum AM, Andersen MS, Giambastiani BMS, Kelly BFJ, Acworth RI (2013) River–aquifer interactions in a semi-arid environment stressed by groundwater abstraction. Hydrol Process 27:1072–1085. https://doi.org/10.1002/hyp.9229

    Article  Google Scholar 

  35. McMillan TC, Rau GC, Timms WA, Andersen MS (2019) Utilizing the impact of earth and atmospheric tides on groundwater systems: a review reveals the future potential. Rev Geophys 2018RG000630. https://doi.org/10.1029/2018rg000630

  36. NCRIS (2020) NCRIS Groundwater Database. http://groundwater.anu.edu.au/. Accessed September 2020

  37. Post VEA, von Asmuth JR (2013) Review: Hydraulic head measurements—new technologies, classic pitfalls. Hydrogeol J 21:737–750. https://doi.org/10.1007/s10040-013-0969-0

    Article  Google Scholar 

  38. Puri S (2003) Transboundary aquifer resources: international water law and hydrogeological uncertainty. Water Int 28:276–279. https://doi.org/10.1080/02508060308691693

    Article  Google Scholar 

  39. Rahi KA, Halihan T (2013) Identifying aquifer type in fractured rock aquifers using harmonic analysis. GroundWater 51:76–82. https://doi.org/10.1111/j.1745-6584.2012.00925.x

    Article  Google Scholar 

  40. Rasmussen TC, Crawford LA (1997) Identifying and removing barometric pressure effects in confined and unconfined aquifers. Ground Water 35:502–511. https://doi.org/10.1111/j.1745-6584.1997.tb00111.x

    Article  Google Scholar 

  41. Rau GC, Post VEA, Shanafield MA, Krekeler T, Banks EW, Blum P (2019) Error in hydraulic head and gradient time-series measurements: a quantitative appraisal. Hydrol Earth Syst Sci Discuss. https://doi.org/10.5194/hess-2019-182

  42. Reinecke R, Foglia L, Mehl S, Herman JD, Wachholz A, Trautmann T, Döll P (2019) Spatially distributed sensitivity of simulated global groundwater heads and flows to hydraulic conductivity, groundwater recharge, and surface water body parameterization. Hydrol Earth Syst Sci 23:4561–4582. https://doi.org/10.5194/hess-23-4561-2019

    Article  Google Scholar 

  43. Rodriguez-Lado L, Sun G, Berg M, Zhang Q, Xue H, Zheng Q, Johnson CA (2013) Groundwater arsenic contamination throughout China. Science 341:866–868. https://doi.org/10.1126/science.1237484

    Article  Google Scholar 

  44. Rosenberry DO (1990) Effect of Sensor Error on Interpretation of Long‐Term Water‐Level Data. Groundwater 28:927–936.

  45. Shen C (2018) A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resour Res 54:8558–8593. https://doi.org/10.1029/2018WR022643

    Article  Google Scholar 

  46. Spane FA (2002) Considering barometric pressure in groundwater flow investigations. Water Resour Res 38:14–1-14–18. https://doi.org/10.1029/2001WR000701

    Article  Google Scholar 

  47. Taylor CJ, Alley WM (2001) Ground-water-level monitoring and the importance of long-term water-level data. US Geol Surv Circ 1217. https://pubs.usgs.gov/circ/circ1217/html/pdf.html. Accessed September 2020

  48. USGS (2020) National Ground-Water Monitoring Network. US Geological Survey. https://cida.usgs.gov/ngwmn/. Accessed September 2020

  49. Van Der Kamp G, Gale JE (1983) Theory of earth tide and barometric effects in porous formations with compressible grains. Water Resour Res 19:538–544. https://doi.org/10.1029/WR019i002p00538

    Article  Google Scholar 

  50. van der Kamp G, Schmidt R (2017) Review: Moisture loading—the hidden information in groundwater observation well records. Hydrogeol J 25:2225–2233. https://doi.org/10.1007/s10040-017-1631-z

    Article  Google Scholar 

  51. Wada Y, Van Beek LPH, Van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37. https://doi.org/10.1029/2010GL044571

  52. Wilkinson MD, Dumontier M, IJJ A, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, AJG G, Groth P, Goble C, Grethe JS, Heringa J, ’t Hoen PA, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone S-A, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B (2016) The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3:160018. https://doi.org/10.1038/sdata.2016.18

    Article  Google Scholar 

  53. WMO (2020) Global Hydrometry Support Facility (WMO HydroHub) World Meteorological Organization. https://hydrohub.wmo.int/en/home. Accessed September 2020

  54. Xue L, Brodsky EE, Erskine J, Fulton PM, Carter R (2016) A permeability and compliance contrast measured hydrogeologically on the San Andreas Fault. Geochem Geophys Geosyst 17:858–871. https://doi.org/10.1002/2015GC006167

    Article  Google Scholar 

  55. Zhang H, Shi Z, Wang G, Sun X, Yan R, Liu C (2019) Large earthquake reshapes the groundwater flow system: insight from the water-level response to earth tides and atmospheric pressure in a deep well. Water Resour Res 2018WR024608. https://doi.org/10.1029/2018WR024608

Download references

Acknowledgements

Data sharing is not applicable to this article as no new data were created or analysed in this study.

Funding

Open Access funding enabled and organized by Projekt DEAL. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 835852. Funding is gratefully acknowledged by Mark Cuthbert for an Independent Research Fellowship from the UK Natural Environment Research Council (NE/P017819/1). We are thankful for long-term funding from the Australian Government’s National Collaborative Research Infrastructure Strategy (NCRIS) which has provided us with valuable resources and experience contributing to this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gabriel C. Rau.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rau, G.C., Cuthbert, M.O., Post, V.E.A. et al. Future-proofing hydrogeology by revising groundwater monitoring practice. Hydrogeol J 28, 2963–2969 (2020). https://doi.org/10.1007/s10040-020-02242-7

Download citation

Keywords

  • Groundwater monitoring
  • Equipment/field techniques
  • High resolution
  • High frequency
  • Guidelines