Advertisement

Controls over hydrogen and oxygen isotopes of surface water and groundwater in the Mun River catchment, northeast Thailand: implications for the water cycle

Contrôle par les isotopes de l’hydrogène et l’oxygène des eaux de surface et souterraines dans le bassin de la rivière Mun, nord-est de la Thaïlande: conséquences pour le cycle de l’eau

Controles sobre los isótopos de hidrógeno y oxígeno de las aguas superficiales y subterráneas en la cuenca del río Mun, noreste de Tailandia: implicancias para el ciclo del agua

泰国东北部Mun河流域地表水与地下水中氢氧同位素的控制:对水循环的启示

Controles sobre os isótopos de hidrogênio e oxigênio nas águas superficiais e subterrâneas da bacia do Rio Mun, nordeste da Tailândia: implicações para o ciclo hidrológico

  • 24 Accesses

Abstract

Stable isotopic composition (δ2H, δ18O) of river water, groundwater, and paddy water in the Mun River catchment, northeast Thailand, were determined to investigate the hydrological processes and the impacts of natural and anthropogenic activities on the water cycle. Quantities of δ2H (−93.9 to −25.4‰) and δ18O (−12.24 to −2.22‰) in river water in the wet season follow the trend: upper reaches > middle reaches ≈ lower reaches. Trends for δ2H (−52.3 to −22.0‰) and δ18O (−6.37 to −1.36‰) in the dry season are: upper reaches ≈ middle reaches > lower reaches. In the dry season, groundwater (δ2H: −57.5 to −34.6‰, δ18O: −8.24 to −4.40‰) shows a lighter isotopic composition, and paddy water (δ2H: −18.2‰, δ18O: −0.72‰) shows the highest isotopic composition. Spatial variation of δ18O and deuterium excess suggests that groundwater exchanges with surface water frequently. Rainfall and river water recharge groundwater in the wet season, and groundwater flows back to the river in the dry season, especially in the middle reaches. This process is most likely related to impoundment of the rivers by large dams. On the other hand, the lowest values of stable isotopes of river water are coincident with the extreme flooding that was produced by Tropical Storm Sonca in July 2017. This study contributes to a better understanding of hydrological processes in the Mun River catchment and provides a perspective on the application of stable isotopes to other large tropical monsoon catchments around the world.

Résumé

La composition en isotopes stables ((δ2H, δ18O) des eaux de rivière, souterraines et de rizières du bassin de la rivière Mun, nord-est de la Thaïlande a été déterminée pour étudier les processus hydrologiques et les impacts des activités naturelles et anthropiques sur le cycle de l’eau. Les teneurs en δ2H (−93.9 à −25.4‰) et δ18O (−12.24 à −2.22‰) des eaux de rivières en saison humide suivent la tendance suivante: parties supérieures > parties intermédiaires ≈ parties basses. Les tendances de δ2H (−52.3 à −22.0‰) et δ18O (−6.37 à −1.36‰) en saison sèche sont: parties supérieures ≈ parties intermédiaires > parties basses. En saison sèche, les eaux souterraines (δ2H: −57.5 to −34.6‰, δ18O: −8.24 to −4.40‰) montrent une composition isotopique plus appauvrie, et les eaux de rizières (δ2H: −18.2‰, δ18O: −0.72‰) montrent la composition isotopique la plus enrichie. Les variations spatiales en δ18O et excès en deutérium suggèrent que les eaux souterraines échangent fréquemment avec les eaux de surface. Les précipitations et l’eau des rivières rechargent les eaux souterraines pendant la saison des pluies, est les eaux souterraines s’écoulent vers la rivière pendant la saison sèche, spécialement dans les parties intermédiaires. Ce processus est certainement lié à l’endiguement des rivières par les grands barrages. D’autre part, les faibles teneurs isotopiques des eaux de rivière coïncident avec les crues extrêmes qui ont été produites par l’ouragan tropical Sonca de juillet 2017. This study contributes to a better understanding of hydrological processes in the Mun River catchment and provides a perspective on the application of stable isotopes to other large tropical monsoon catchments around the world. Cette étude participe à une meilleure compréhension des processus hydrologiques dans le bassin versant de la rivière Mun et fournit une perspective d’application des isotopes stables dans d’autres grands bassins influencés par les moussons tropicales dans le monde.

Resumen

Se determinó que la composición de isótopos estables (δ2H, δ18O) del agua de los ríos, aguas subterráneas y arrozales en la cuenca del río Mun, en el noreste de Tailandia, permite investigar los procesos hidrológicos y los impactos de las actividades naturales y antrópicas en el ciclo del agua. Las cantidades de δ2H (−93.9 a −25.4‰) y δ18O (−12.24 a −2.22‰) en agua de río en la estación húmeda siguen la tendencia: los tramos superiores > medios ≈ los tramos inferiores. Tendencias para δ2H (−52.3 a −22.0‰) y δ18O (−6.37 a −1.36‰) en la estación seca son: altas cumbres ≈ medias cumbres > bajas. En la estación seca, el agua subterránea (δ2H: −57.5 a −34.6‰, δ18O: −8.24 a −4.40‰) muestra una composición isotópica más ligera, y el agua de arroz (δ2H: −18.2‰, δ18O: muestra la composición isotópica más alta. La variación espacial de δ18O y el exceso de deuterio sugiere que el agua subterránea intercambia frecuentemente con el agua superficial. Las precipitaciones y el agua de los ríos recargan el agua subterránea en la estación húmeda, y el agua subterránea fluye hacia el río en la estación seca, especialmente en los tramos medios. Es muy probable que este proceso esté relacionado con el embalse de los ríos por medio de grandes presas. Por otro lado, los valores más bajos de isótopos estables de agua de río coinciden con las inundaciones extremas producidas por la tormenta tropical Sonca en julio de 2017. Este estudio contribuye a una mejor comprensión de los procesos hidrológicos en la cuenca del río Mun y proporciona una perspectiva sobre la aplicación de isótopos estables a otras grandes cuencas de monzones tropicales en todo el mundo.

摘要

泰国东北部Mun河流域中河水、地下水和稻田水的氢氧稳定同位素组成(δ2H, δ18O)被用于调查该地区水文过程和自然与人为活动条件对水循环的影响。雨季时, 河水中的δ2H (−93.9 到–25.4‰)与δ18O(−12.24 到 –2.22‰)的含量的规律是:上游河段>中游河段≈下游河段。而旱季时δ2H (−52.3 到 –22.0‰)与 δ18O (−6.37 到 –1.36‰)含量的规律是:上游河段≈中游河段>下游河段。旱季地下水中的稳定同位素含量较低(δ2H: –57.5到–34.6‰, δ18O: –8.24到–4.40‰), 而稻田水中同位素含量最高 (δ2H: −18.2‰, δ18O: −0.72‰)。δ18O与δ2H过量的空间变异性说明了地下水与地表水之间交换频繁。降雨与河流在雨季补给地下水, 在旱季地下水回补河流, 回补现象在中游河段最为明显。这一过程很可能与大坝蓄水有关。另一方面, 河水稳定同位素的最低值与2017年7月热带风暴Sonca造成的特大洪水发生的位置和时间相一致。这项研究有助于更好地了解Mun河流域的水文过程, 并为稳定同位素在世界各地其他大型热带季风流域的应用提供参考。

Resumo

A composição dos isótopos estáveis (δ2H, δ18O) da água do rio, água subterrânea e água de arrozais na bacia do Rio Mun, nordeste da Tailândia, foi determinada para investigar os processos hidrológicos e os impactos das atividades naturais e antrópicas no ciclo hidrológico. As variações de δ2H (−93.9 a −25.4 ‰) e δ18O (−12.24 a −2.22 ‰) na água do rio durante a estação chuvosa, seguem a seguinte tendência: valores superiores > valores médios ≈ valores inferiores. As tendências para δ2H (−52.3 a −22.0 ‰) e δ18O (−6.37 a −1.36 ‰) na estação seca são: valores superiores ≈ valores médios > valores inferiores. Na estação seca, as águas subterrâneas (δ2H: −57.5 a −34.6 ‰, δ18O: −8.24 a −4.40 ‰) apresentaram uma composição isotópica mais empobrecida e a água dos arrozais (δ2H: −18.2 ‰, δ18O: −0.72 ‰) apresentou uma composição isotópica mais enriquecida. As variações espaciais de δ18O e excesso de deutério, sugerem que houve trocas frequentes entre as águas subterrâneas e as águas superficiais. As chuvas e as águas do rio recarregam as águas subterrâneas durante a estação chuvosa, e as águas subterrâneas retornam ao rio durante a estação seca, especialmente nas regiões intermediárias. Esse processo provavelmente está relacionado ao represamento dos rios por grandes barragens. Por outro lado, os valores mais empobrecidos dos isótopos estáveis nas águas do rio, são condizentes com as inundações extremas ocasionadas pela Tempestade Tropical Sonca em julho de 2017. Este estudo contribui para uma melhor compreensão dos processos hidrológicos na bacia do Rio Mun, e fornece uma perspectiva sobre a aplicação dos isótopos estáveis a outras grandes bacias tropicais de monções ao redor do mundo.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Akter A, Babel MS (2012) Hydrological modeling of the Mun River basin in Thailand. J Hydrol 452:232–246. https://doi.org/10.1016/j.jhydrol.2012.05.059

  2. Beal LK, Wong CI, Bautista KK, Jenson JW, Banner JL, Lander MA, Gingerich SB, Partin JW, Hardt B, van Oort NH (2019) Isotopic and geochemical assessment of the sensitivity of groundwater resources of Guam, Mariana Islands, to intra- and inter-annual variations in hydroclimate. J Hydrol 568:174–183. https://doi.org/10.1016/j.jhydrol.2018.10.049

  3. Brunner P, Therrien R, Renard P, Simmons CT, Franssen H-JH (2017) Advances in understanding river–groundwater interactions. Rev Geophys 55:818–854. https://doi.org/10.1002/2017rg000556

  4. Cerar S, Mezga K, Zibret G, Urbanc J, Komac M (2018) Comparison of prediction methods for oxygen-18 isotope composition in shallow groundwater. Sci Total Environ 631–632:358–368. https://doi.org/10.1016/j.scitotenv.2018.03.033

  5. Cochrane TA, Arias ME, Piman T (2014) Historical impact of water infrastructure on water levels of the Mekong River and the Tonle Sap system. Hydrol Earth Syst Sci 18:4529–4541. https://doi.org/10.5194/hess-18-4529-2014

  6. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703. https://doi.org/10.1126/science.133.3465.1702

  7. Dehaspe J, Birkel C, Tetzlaff D, Sanchez-Murillo R, Duran-Quesada AM, Soulsby C (2018) Spatially distributed tracer-aided modelling to explore water and isotope transport, storage and mixing in a pristine, humid tropical catchment. Hydrol Process 32:3206–3224. https://doi.org/10.1002/hyp.13258

  8. Deng K, Yang S, Lian E, Li C, Yang C, Wei H (2016) Three Gorges Dam alters the Changjiang (Yangtze) river water cycle in the dry seasons: evidence from H-O isotopes. Sci Total Environ 562:89–97. https://doi.org/10.1016/j.scitotenv.2016.03.213

  9. Elliott J, Deryng D, Mueller C, Frieler K, Konzmann M, Gerten D, Glotter M, Floerke M, Wada Y, Best N, Eisner S, Fekete BM, Folberth C, Foster I, Gosling SN, Haddeland I, Khabarov N, Ludwig F, Masaki Y, Olin S, Rosenzweig C, Ruane AC, Satoh Y, Schmid E, Stacke T, Tang Q, Wisser D (2014) Constraints and potentials of future irrigation water availability on agricultural production under climate change. PNAS 111:3239–3244. https://doi.org/10.1073/pnas.1222474110

  10. England N, James AL, Chutko KJ, Pyrce RS, Yao H (2019) Hydrologic and water isotope characterization of a regulated Canadian Shield river basin. Hydrol Process 33:905–919. https://doi.org/10.1002/hyp.13371

  11. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

  12. Fukai S, Ouk M (2012) Increased productivity of rainfed lowland rice cropping systems of the Mekong region. Crop Pasture Sci 63:944–973. https://doi.org/10.1071/cp12294

  13. Good SP, Noone D, Kurita N, Benetti M, Bowen GJ (2015) D/H isotope ratios in the global hydrologic cycle. Geophys Res Lett 42:5042–5050. https://doi.org/10.1002/2015gl064117

  14. HAII (2017) Record flood events from the influence of the storm Sonca (SONCA) on 24–31 July, Bangkok, Thailand. http://www.thaiwaternet/current/2017/SONCAjuly2017/soncahtml. Accessed 11 August 2019

  15. Halder J, Terzer S, Wassenaar LI, Araguas-Araguas LJ, Aggarwal PK (2015) The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research. Hydrol Earth Syst Sci 19:3419–3431. https://doi.org/10.5194/hess-19-3419-2015

  16. Han G, Lv P, Tang Y, Song Z (2018) Spatial and temporal variation of H and O isotopic compositions of the Xijiang River system, Southwest China. Isot Environ Health Stud 54:137–146. https://doi.org/10.1080/10256016.2017.1368507

  17. Han G, Tang Y, Wu Q, Liu M, Wang Z (2019) Assessing contamination sources by using sulfur and oxygen isotopes of sulfate ions in Xijiang River Basin, Southwest China. J Environ Qual 48:1507–1516. https://doi.org/10.2134/jeq2019.03.0150

  18. Hao S, Li F, Li Y, Gu C, Zhang Q, Qiao Y, Jiao L, Zhu N (2019) Stable isotope evidence for identifying the recharge mechanisms of precipitation, surface water, and groundwater in the Ebinur Lake basin. Sci Total Environ 657:1041–1050. https://doi.org/10.1016/j.scitotenv.2018.12.102

  19. Hecht JS, Lacombe G, Arias ME, Thanh Duc D, Piman T (2019) Hydropower dams of the Mekong River basin: a review of their hydrological impacts. J Hydrol 568:285–300. https://doi.org/10.1016/j.jhydrol.2018.10.045

  20. IAEA/WMO (2019) Global network of isotopes in precipitation. https://nucleus.iaea.org/wiser. Accessed 22 May 2019 2019

  21. Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater–surface water interactions: a review. Hydrol Earth Syst Sci 10:873–887. https://doi.org/10.5194/hess-10-873-2006

  22. Kendall C, Coplen TB (2001) Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol Process 15:1363–1393. https://doi.org/10.1002/hyp.217

  23. Klaus J, McDonnell JJ (2013) Hydrograph separation using stable isotopes: review and evaluation. J Hydrol 505:47–64. https://doi.org/10.1016/j.jhydrol.2013.09.006

  24. Kudo R, Masumoto T, Horikawa N (2015) Modeling of Paddy water management with large reservoirs in Northeast Thailand and its application to climate change assessment. Jpn Agric R Q 49:363–376

  25. Kumar A, Sanyal P, Agrawal S (2019) Spatial distribution of delta O-18 values of water in the Ganga River Basin: insight into the hydrological processes. J Hydrol 571:225–234. https://doi.org/10.1016/j.jhydrol.2019.01.044

  26. Laonamsai J, Putthividhya A (2016) Preliminary assessment of groundwater and surface water characteristics in the upper Chao Phraya River Basin land using a stable isotope fingerprinting technique. ASCE, Reston, VA

  27. Lebel L, Xu J, Bastakoti RC, Lamba A (2010) Pursuits of adaptiveness in the shared rivers of Monsoon Asia. Int Environ Agreem Politics Law Econ 10:355–375. https://doi.org/10.1007/s10784-010-9141-7

  28. Lekshmy PR, Midhun M, Ramesh R (2018) Influence of stratiform clouds on delta D and delta O-18 of monsoon water vapour and rain at two tropical coastal stations. J Hydrol 563:354–362. https://doi.org/10.1016/j.jhydrol.2018.06.001

  29. Li Z, Gui J, Wang X, Feng Q, Zhao T, Ouyang C, Guo X, Zhang B, Shi Y (2019a) Water resources in inland regions of central Asia: evidence from stable isotope tracing. J Hydrol 570:1–16. https://doi.org/10.1016/j.jhydrol.2019.01.003

  30. Li X, Han G, Liu M, Song C, Zhang Q, Yang K, Liu J (2019b) Hydrochemistry and dissolved inorganic carbon (DIC) cycling in a tropical agricultural river, Mun River Basin, Northeast Thailand. Int J Environ Res Public Health 16. https://doi.org/10.3390/ijerph16183410

  31. Liu H, Guo Z, Gao A, Yuan X, Zhang B (2016) O-18 and Ra-226 in the Minjiang River estuary, China and their hydrological implications. Estuar Coast Shelf Sci 173:93–101. https://doi.org/10.1016/j.ecss.2015.12.023

  32. Marchina C, Bianchini G, Natali C, Pennisi M, Colombani N, Tassinari R, Knoeller K (2015) The Po river water from the Alps to the Adriatic Sea (Italy): new insights from geochemical and isotopic (δ 18 O-δD) data. Environ Sci Pollut Res 22:1–20

  33. Molle F, Floch P (2008) Megaprojects and social and environmental changes: the case of the Thai “water grid”. Ambio 37:199–204. https://doi.org/10.1579/0044-7447(2008)37[199:Masaec]2.0.Co;2

  34. MRC (2018) Irrigation database improvement for the lower Mekong Basin. MRC, Vientiane, Laos

  35. NGDC (2008) ETOPO1 global relief model (bedrock). National Centers for Environmental Information, NESDIS, NOAA, Washington, DC. https://www.ngdc.noaa.gov/mgg/global/global.html. Accessed 13 December 2018

  36. Nguyen Le D, Heidbuechel I, Meyer H, Merz B, Apel H (2018) What controls the stable isotope composition of precipitation in the Mekong Delta? a model-based statistical approach. Hydrol Earth Syst Sci 22:1239–1262. https://doi.org/10.5194/hess-22-1239-2018

  37. Numabe A, Nagahora S (2006) Estimation of pesticide runoff from paddy fields to rural rivers. Water Sci Technol 53:139–146. https://doi.org/10.2166/wst.2006.047

  38. Ogrinc N, Kanduc T, Stichler W, Vreca P (2008) Spatial and seasonal variations in delta O-18 and delta D values in the River Sava in Slovenia. J Hydrol 359:303–312. https://doi.org/10.1016/j.jhydrol.2008.07.010

  39. Penna D, Hopp L, Scandellari F, Allen ST, Benettin P, Beyer M, Geris J, Klaus J, Marshall JD, Schwendenmann L, Volkmann THM, von Freyberg J, Amin A, Ceperley N, Engel M, Frentress J, Giambastiani Y, McDonnell JJ, Zuecco G, Llorens P, Siegwolf RTW, Dawson TE, Kirchner JW (2018) Ideas and perspectives: tracing terrestrial ecosystem water fluxes using hydrogen and oxygen stable isotopes—challenges and opportunities from an interdisciplinary perspective. Biogeosciences 15:6399–6415. https://doi.org/10.5194/bg-15-6399-2018

  40. Prabnakorn S, Maskey S, Suryadi FX, de Fraiture C (2018) Rice yield in response to climate trends and drought index in the Mun River Basin, Thailand. Sci Total Environ 621:108–119. https://doi.org/10.1016/j.scitotenv.2017.11.136

  41. Reckerth A, Stichler W, Schmidt A, Stumpp C (2017) Long-term data set analysis of stable isotopic composition in German rivers. J Hydrol 552:718–731. https://doi.org/10.1016/j.jhydrol.2017.07.022

  42. Renault D, Hemakumara M, Molden D (2001) Importance of water consumption by perennial vegetation in irrigated areas of the humid tropics: evidence from Sri Lanka. Agric Water Manag 46:215–230. https://doi.org/10.1016/s0378-3774(00)00087-1

  43. Scott G, O’Reilly D (2015) Rainfall and circular moated sites in North-East Thailand. Antiquity 89:1125–1138. https://doi.org/10.15184/aqy.2015.130

  44. Shourian M, Raoufi Y, Attari J (2017) Interbasin water transfer capacity design by two approaches of simulation-optimization and multicriteria decision making. J Water Resour Planning Manag 143. https://doi.org/10.1061/(asce)wr.1943-5452.0000818

  45. Miyagawa S, Kuroda T (1988) Effects of environment and technical factors on rice yield in rain-fed paddy fields of Northeast Thailand, Japan. J Crop Sci 57:773–781

  46. Sneddon C (2002) Water conflicts and river basins: the contradictions of comanagement and scale in Northeast Thailand. Soc Nat Resour 15:725–741. https://doi.org/10.1080/08941920290069317

  47. Sneddon C (2003) Reconfiguring scale and power: the Khong-Chi-Mun Project in northeast Thailand. Environ Plan A 35:2229–2250. https://doi.org/10.1068/a35299

  48. Somura H, Yoshida K, Tanji H (2008) Decadal fluctuations in the consumption of irrigation water during the rainy season, lower Mekong River. Hydrol Process 22:1310–1320. https://doi.org/10.1002/hyp.6940

  49. Sthiannopkao S, Takizawa S, Homewong J, Wirojanagud W (2007) Soil erosion and its impacts on water treatment in the northeastern provinces of Thailand. Environ Int 33:706–711. https://doi.org/10.1016/j.envint.2006.12.007

  50. Taniguchi M, Nakayama T, Tase N, Shimada J (2000) Stable isotope studies of precipitation and river water in the Lake Biwa basin, Japan. Hydrol Process 14:539–556. https://doi.org/10.1002/(sici)1099-1085(20000228)14:3<539::Aid-hyp953>3.0.Co;2-l

  51. Thai Khanh P, Inoue T, Yoshino K, Hiramatsu K, Dang Thi Tuyet N (2012) Temporal trend of pesticide concentrations in the Chikugo River (Japan) with changes in environmental regulation and field infrastructure. Agric Water Manag 113:96–104. https://doi.org/10.1016/j.agwat.2012.07.002

  52. Thavorntam W, Tantemsapya N (2013) Vegetation greenness modeling in response to climate change for Northeast Thailand. J Geogr Sci 23:1052–1068. https://doi.org/10.1007/s11442-013-1062-2

  53. Tingsanchali T, Singh PR (1996) Optimum water resources allocation for Mekong-Chi-Mun transbasin irrigation project, Northeast Thailand. Water Int 21:20–29. https://doi.org/10.1080/02508069608686484

  54. Wang JJ, Lu XX, Kummu M (2011) Sediment load estimates and variations in the lower Mekong River. River Res Appl 27:33–46. https://doi.org/10.1002/rra.1337

  55. Wang Y, Chen Y, Li W (2014) Temporal and spatial variation of water stable isotopes (O-18 and H-2) in the Kaidu River basin, northwestern China. Hydrol Process 28:653–661. https://doi.org/10.1002/hyp.9622

  56. WWAP (2012) The United Nations world water development report 4: managing water under uncertainty and risk. UNESCO, Paris. https://unesdoc.unesco.org/ark:/48223/pf0000215644 Accessed 13 December 2018

  57. Yang K, Han G, Liu M, Li X, Liu J, Zhang Q (2018) Spatial and seasonal variation of O and H isotopes in the Jiulong River, Southeast China. Water 10. https://doi.org/10.3390/w10111677

  58. Yang K, Han H, Song C, Zhang P (2019) Stable H-O isotopic composition and water quality assessment of surface water and groundwater: a case study in the Dabie Mountains, central China. Int J Environ R Public Health 16. https://doi.org/10.3390/ijerph16214076

  59. Yoshioka YI, Nakamura K, Nakano T, Horino H, Shin K-C, Hashimoto S, Kawashima S (2016) Multiple-indicator study of groundwater flow and chemistry and the impacts of river and paddy water on groundwater in the alluvial fan of the Tedori River, Japan. Hydrol Process 30:2804–2816. https://doi.org/10.1002/hyp.10785

  60. Zeng J, Yue F-J, Wang Z-J, Wu Q, Qin C-Q, Li S-L (2019) Quantifying depression trapping effect on rainwater chemical composition during the rainy season in karst agricultural area, southwestern China. Atmos Environ 218:116998. https://doi.org/10.1016/j.atmosenv.2019.116998

  61. Zhang X, Ma H, Han Y (2012) Recent status and prospects on potash deposits on Thailand-Laos Khorat Plateau. Adv Earth Sci 27:549–556

  62. Zhang X, Tan H, Zhang W, Tang Q, Li W (2014) Stable isotopic composition of hydration water in carnallite of late Cretaceous potash deposits on Khorat Plateau. Acta Geol Sin 88:1588–1590

  63. Zheng C, Jia L, Hu G, Lu J (2019) Earth observations-based evapotranspiration in northeastern Thailand. Remote Sens 11. https://doi.org/10.3390/rs11020138

Download references

Acknowledgements

The authors would like to thank the two anonymous reviewers, the editor Rui Ma, and the associate editor Sebnem Arslan for their detailed comments and valuable suggestions, which greatly improved the manuscript. The authors gratefully acknowledge Man Liu, Chao Song, Qian Zhang, Xiaoqiang Li, and Aiguo Dong from China University of Geosciences, Beijing, for the sampling work. Also, the authors wish to thank Prof. Fairda Malem from the Ministry of Natural Resource and Environment of Thailand for assistance in field sampling.

Funding information

This work was supported by the National Natural Science Foundation of China [grant numbers 41661144029, 41325010].

Author information

Correspondence to Guilin Han.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Han, G. Controls over hydrogen and oxygen isotopes of surface water and groundwater in the Mun River catchment, northeast Thailand: implications for the water cycle. Hydrogeol J (2020) doi:10.1007/s10040-019-02106-9

Download citation

Keywords

  • Stable isotopes
  • Deuterium excess
  • Groundwater/surface-water relations
  • Hydrological processes
  • Thailand