Advertisement

Role of Quaternary glacial-outburst megaflood paleochannel deposits in a basalt-dominated aquifer system in the West Plains area of eastern Washington, USA

  • Chad J. PritchardEmail author
  • David R. Gaylord
  • Drew B. Adams
  • Shawna Ernst
  • Michael Hermanson
Report

Abstract

Approximately 2 km2 of sand- and gravel-rich Pleistocene glacial-outburst megaflood sediment has accumulated in a series of five subparallel paleochannels that are an important component of a basalt-dominated aquifer system on the semiarid, ~450-km2 West Plains area. Located near Spokane, Washington (USA), the West Plains paleochannel deposits have been used for artificial storage and recovery wells and for planned and passive stormwater disposal in this rapidly growing area. Recent recognition of perfluorooctanoic acid contamination and excessive drawdowns have led to the closure of multiple municipal wells on the West Plains, highlighting the challenges of developing a sustainable groundwater supply in this complex aquifer system. Geologic and hydrogeologic data, from more than 1,400 water-well reports, surface exposures, existing groundwater geochemistry reports, and modeling, reveal the interconnections between the paleochannel deposits and surrounding basalt flows in three dimensions (3D). Initially incised into the Miocene Columbia River Basalt and excavated by Pleistocene glacial-outburst megaflooding, the West Plains paleochannels are projected in unprecedented 3D. This study’s modeled interactions between the more highly hydraulically conductive (100×) paleochannel sedimentary deposits and surrounding basalt beds provide insight into 14C ages and tritium values that had been measured previously. Sediment-filled closed depressions at the bases of the paleochannels, which are features likely formed by turbulent bursts (‘kolks’) during peak megaflood flows, are potentially promising groundwater storage sites. However, because of the relatively higher permeability of the unconfined paleochannel deposits, the closed depressions also are potential conduits for infiltration of contamination to deeper parts of the aquifer system.

Keywords

Groundwater management Megafloods Injection wells Contamination USA 

Rôle des dépôts de paléochenaux de mégacrues du Quaternaire dans un système aquifère dominé par des basaltes dans la région des Plaines Occidentales de l’est de Washington, Etats-unis d’Amérique

Résumé

Environ 2 km2 de sédiments de mégacrues glaciaires riches en sables et graviers du Pléistocène se sont accumulés dans des séries de cinq paléochenaux subparallèles qui constituent une composante importante du système aquifère dominé par le basalte dans la région semiaride des Plaines Occidentales couvrant quelques 450 km2. Les dépôts de paléochenaux des Plaines Occidentales localisées près de Spokane, Washington (Etats-Unis d’Amérique) ont été utilisés pour du stockage souterrain par recharge artificielle et pour une gestion planifiée et passive des eaux d’orage dans cette zone à croissance rapide. La reconnaissance récente de contamination à l’acide perfluorooctanoique et des prélèvements excessifs ont conduit à la fermeture de plusieurs puits dans des champs captants municipaux dans les Plaines Occidentales, mettant en évidence les défis liés à l’exploitation d’une alimentation durable en eaux souterraines dans ce système aquifère complexe. Les données géologiques et hydrogéologiques, provenant de plus de 1,400 rapports de puits d’eau, de pressions de surface, de rapports de la géochimie des eaux souterraines et de modélisation, révèlent les interconnexions entre les dépôts sédimentaires des paléochenaux et les écoulements dans le basalte environnant en trois dimensions (3D). Les paléochenaux des Plaines Occidentales, initialement incisés dans le basalte de la rivière Columbia au Miocène et excavés lors de mégacrues glaciaires au Pléistocène, sont représentés pour la première fois en 3D. Les interactions modélisées de cette étude entre les dépôts sédimentaires des paléochenaux caractérisés par la plus forte conductivité hydraulique (100×) et les lits de basalte environnants donnent un aperçu des âges de 14C et des valeurs de tritium qui avaient été mesurées précédemment. Les dépressions fermées remplies de sédiments à la base des paléochenaux, qui sont le résultat vraisemblablement d’épisodes turbulents (‘kolks’) au cours des pics des mégacrues, sont potentiellement des sites prometteurs pour le stockage d’eau en aquifère. Cependant, à cause de la relative forte perméabilité des dépôts des paléochenaux non confinés, les dépressions fermées constituent également de potentiels chemins d’écoulement préférentiel de contaminants vers les parties plus profondes du système aquifère.

Papel de los depósitos glaciares de desborde en paleocanales del cuaternario en un sistema acuífero dominado por basaltos en el área de los West Plains del este de Washington, EEUU

Resumen

Aproximadamente 2 km2 de sedimentos glaciales ricos en arena y grava del Pleistoceno se han acumulado en una serie de cinco paleocanales subparalelos que son un componente importante de un sistema acuífero dominado por basaltos en un área semiárida de ~450 km2 en las West Plains. Los depósitos de los paleocanales de West Plains, situados cerca de Spokane, Washington (EEUU), se han utilizado para el almacenamiento artificial y pozos de recuperación y para una eliminación planificada y pasiva de aguas pluviales en esta zona de rápido crecimiento. El reciente reconocimiento de la contaminación por ácido perfluorooctanoico y la explotación excesiva han llevado al cierre de múltiples pozos municipales en las West Plains, lo que pone de relieve los desafíos de desarrollar un suministro sostenible de agua subterránea en este complejo sistema acuífero. Los datos geológicos e hidrogeológicos, de más de 1,400 informes de pozos de agua, las exposiciones en superficie, informes geoquímicos existentes sobre aguas subterráneas y modelación, revelan las interconexiones entre los depósitos de los paleocanales y los flujos en el basalto circundante en tres dimensiones (3D). Los paleocanales de West Plains, inicialmente excavados en el Mioceno Columbia River Basalt y cortados en el Pleistoceno, se proyectan en un modelo 3D sin antecedentes. Las interacciones modeladas en este estudio entre los depósitos sedimentarios de paleocanales más altamente conductores hidráulicamente (100×) y las capas de basalto circundantes proporcionan información sobre las edades de 14C y los valores de tritio que se habían medido previamente. Las depresiones cerradas rellenas de sedimentos en las bases de los paleocanales, que son probablemente formadas por característicos desbordes (“kolks”) durante los picos de flujo de inundaciones extremas, son sitios de almacenamiento de agua subterránea potencialmente prometedores. Sin embargo, debido a la permeabilidad relativamente mayor de los depósitos paleocanales no confinados, las depresiones cerradas también son conductos potenciales para la infiltración de la contaminación a partes más profundas del sistema acuífero.

USA美国华盛顿州东部的西平原地区第四纪冰川喷发的史前大洪水古河道沉积物在玄武岩为主的含水层系统中的作用

摘要

大约2 km2的富含砂和砾石的更新世冰川喷发的史前大洪水沉积物已堆积在一系列五个平行的古河道中, 这是半干旱大约450 km2西平原地区以玄武岩为主的含水层系统的重要组成部分。位于美国华盛顿州Spokane附近的西平原古河道沉积物已在这个快速增长地区被用于人工存储和回收井, 以及规划和被动的暴雨处置地。最近对全氟辛酸污染的认识和过大的水位降深导致西平原上多个市政井的关闭, 突显了在这种复杂的含水层系统中开发可持续的地下水供水量所面临的挑战。来自1,400多个水井报告, 地表露头, 现有地下水地球化学报告和建模的地质和水文地质数据揭示了古河道沉积物与周围玄武岩流动之间的三维(3D)相互联系。最初由中新世哥伦比亚河玄武岩切割而成, 并由更新世的冰川喷发史前大洪水挖空, 西平原古河道以前所未有的3D投影方式进行投影。这项研究对较高水力传导率(100 × )的古河道沉积物与周围的玄武岩床之间的相互作用进行了建模, 从而可以深入了解先前测量的14C年龄和氚值。古河道底部的充满泥沙的封闭洼地可能是由史前大洪水高峰期的湍流爆发(“巨石”)形成的特征, 是潜在的地下水储存场所。但是, 由于无压的古河道沉积物相对较高的渗透性, 封闭的漏斗也是污染物运移到含水层系统较深部分的潜在管道。

Papel dos depósitos de uma mega inundação de um paleocanal de avanço glacial do Quaternário em um sistema aquífero dominado por basalto na área das Planícies do Oeste, no leste de Washington, EUA

Resumo

Aproximadamente 2 km2 de sedimento de um mega fluxo rico em areia e cascalho do Pleistoceno acumulou em uma série de cinco paleocanais subparalelos, que são um componente importante de um sistema aquífero dominado por basalto na área semiárida de ~450 km2 das Planícies do Oeste. Localizados próximo de Spokane, Washington (EUA), os depósitos dos paleocanais das Planícies do Oeste têm sido utilizados para armazenamento artificial e recuperação de poços, e para disposição planejada e passiva de águas pluviais, nesta área de rápido crescimento. O reconhecimento recente da contaminação com ácido perfluorooctanóico e os excessivos rebaixamentos levou ao fechamento de vários poços municipais das Planícies do Oeste, destacando os desafios do desenvolvimento de um abastecimento sustentável de água subterrânea neste complexo sistema aquífero. Dados geológicos e hidrogeológicos, de mais de 1400 relatórios de poços de água, exposições de superfície, relatórios geoquímicos de águas subterrâneas existentes e modelagem, revelam as interconexões entre os depósitos de paleocanais e os fluxos de basalto circundantes em três dimensões (3D). Inicialmente incisados no Basalto do Mioceno do Rio Columbia e escavados por mega inundação de um paleocanal de avanço glacial do Pleistoceno, os paleocanais das Planícies do Oeste são projetados em nunca vistas 3D. As interações modeladas deste estudo entre os depósitos sedimentares de paleocanais altamente mais condutivos hidraulicamente (100×) e leitos de basalto circundantes fornecem informações sobre as idades 14C e os valores de trítio medidos anteriormente. Depressões fechadas preenchidas de sedimentos nas bases dos paleocanais, que são características provavelmente formadas por rajadas turbulentas (‘kolks’) durante os picos de fluxos de mega inundações, são locais de armazenamento de águas subterrâneas potencialmente promissores. No entanto, devido à permeabilidade relativamente mais alta dos depósitos paleocanais não confinados, as depressões fechadas também são potenciais condutos para a infiltração de contaminação em partes mais profundas do sistema aquífero.

Notes

Acknowledgements

Franklin (Nick) Foit and Owen Neill conducted ash analysis, and Scott Burroughs assisted with XRF analysis, at the Washington State University Peter Hooper Memorial GeoAnalytical Laboratory. EWU undergraduate students Zach Arm, Sim Gosal, and Austin Ulakovich assisted with sample preparation for XRF analyses and Derek de Haas and Lourdes Garcia with field assistance. Robert Lindsay from Spokane County Water Resources also assisted with this project. Some water well locations were provided by Linda McCollum and Mike Hamilton. Reviews of this manuscript by Dr. John Buchanan, Dr. Steve Reidel, Dr. Richard Waitt, Dr. Paul Lindholdt, Mark Henry and others were greatly appreciated and greatly added to the quality of this report.

Funding information

Funding is appreciated by Washington State Department of Ecology and Spokane County Division of Utilities, WRIA 54 grants, and from Eastern Washington University.

Supplementary material

10040_2019_2100_MOESM1_ESM.pdf (435 kb)
ESM 1 (PDF 434 kb)
10040_2019_2100_MOESM2_ESM.pdf (2.6 mb)
ESM 2 (PDF 2634 kb)
10040_2019_2100_MOESM3_ESM.pdf (108 kb)
ESM 3 (PDF 108 kb)
10040_2019_2100_MOESM4_ESM.pdf (1.4 mb)
ESM 4 (PDF 1398 kb)

References

  1. AECOM (2012) Base-wide conceptual site model for Fairchild Air Force Base. Air Force Civil Engineer Center, San Antonio, TXGoogle Scholar
  2. Allen-King RM, Halket RM, Gaylord DR, Robin MJL (1998) Characterizing the correlation of perchlorethene sorption and hydraulic conductivity using facies-based approaches. Water Resour Res 34(3):385–396CrossRefGoogle Scholar
  3. Atwater BF (1987) Status of glacial Lake Columbia during the last floods from Glacial Lake Missoula. Quat Res 27:182–201CrossRefGoogle Scholar
  4. Baker VR (1973) Paleohydrology and sedimentology of Lake Missoula flooding in eastern Washington. Geol Soc Am Spec Pap 114:1–64Google Scholar
  5. Baker VR (2009) The Channeled Scabland: a retrospective. Ann Rev Earth Planet Sci 37:393–411CrossRefGoogle Scholar
  6. Baker VR, Bjornstad BN, Gaylord DR, Smith GA, Meyer SE, Alho P, Breckenridge RM, Sweeney MR, Zreda M (2016) Pleistocene megaflood landscapes of the Channeled Scabland. In: Lewis RS, Schmidt KL (eds) Exploring the geology of the Inland Northwest. Geol Soc Am Field Guide 41:1–73.  https://doi.org/10.1130/20160041(01)
  7. Bouwer H (2002) Artificial recharge of groundwater, hydrogeology and engineering. Hydrogeol J 10:121–142.  https://doi.org/10.1007/s10040-001-0182-4 CrossRefGoogle Scholar
  8. Bretz JH (1923) The Channeled Scablands of the Columbia Plateau. J Geol 31:617–649CrossRefGoogle Scholar
  9. Bretz JH, Smith HTU, Neff GE (1956) Channeled Scabland of Washington: new data and interpretations. Geol Soc Am Bull 67:957–1049CrossRefGoogle Scholar
  10. Budinger and Associates Inc. (2001) Paleo-channel investigation, Airway Heights, WA: results of seismic refraction survey. Report, URS and Spokane Co., Spokane Valley, WAGoogle Scholar
  11. Burns ER, Snyder DT, Haynes JV, Waibel MS (2012) Groundwater status and trends for the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho. US Geol Surv Sci Invest Rep 2012-5261Google Scholar
  12. Century West Inc. (1989) Landfill siting and development. Environmental Impact Statement 5, Geology/Hydrology, Report, Spokane Reg. Solid Waste, Spokane, WAGoogle Scholar
  13. City of Airway Heights (2019) Water reclamation plant (providing water resources to the West Plains). http://www.cawh.org/departments/public-works/water-reclamation-plant. Accessed 25 November 2019
  14. Deobald WB, Buchanan JP (1995) Hydrogeology of the West Plains area of Spokane County, Washington. Rep. Spokane Co. Water Quality Manag. Progr. Office, Spokane, WAGoogle Scholar
  15. Department of Ecology (2019) Washington State well report viewer. https://fortress.wa.gov/ecy/wellconstruction/map/WCLSWebMap/default.aspx. Accessed 25 November 2019
  16. Derkey RE, Hamilton MM (2007) Geologic map of the Four Mound Prairie 7.5-minute quadrangle, Spokane and Stevens counties, Washington. Geol. Map GM 66, WA Division of Geology and Earth Resources, Olympia, WAGoogle Scholar
  17. Derkey RE, Hamilton MM, Stradling DF (2004) Geologic map of the Airway Heights 7.5-minute quadrangle, Spokane County, Washington. Open File Rep. 2004-1, WA Division of Geology and Earth Resources, Olympia, WAGoogle Scholar
  18. Garcia L, Buchanan J, Pritchard CJ (2016) Origins of rip-up clasts in Missoula floods deposits of the West Plains, eastern Washington. Geol Soc Am Abs Prog 28.  https://doi.org/10.1130/abs/2016RM-276177
  19. Gaylord DR, Stetler LD (1994) Eolian-climatic thresholds and sand dunes at the Hanford site, south-central Washington, USA. J Arid Environ 28:95–116.  https://doi.org/10.1016/S0140-1963(05)80041-2 CrossRefGoogle Scholar
  20. GeoEngineers Inc. (2007) Hydrogeologic Evaluation, Proposed Water Reclamation Plant, City of Airway Heights, Rep. for City of Airway Heights, WA Google Scholar
  21. Griggs AB (1973) Geologic map of the Spokane quadrangle, Washington, Idaho, and Montana. US Geol Surv Map I-768Google Scholar
  22. Griggs AB (1976) The Columbia River Basalt Group in the Spokane quadrangle, Washington, Idaho, and Montana: with a section on petrography, by Swanson DA. US Geol Surv Bull 1413Google Scholar
  23. GSI Water Solutions Inc., INTERA Inc., GeoEngineers Inc., Carlstad Consult (2015) Hydrologeologic framework and conceptual groundwater flow model, review of groundwater conditions in the west plains area, Spokane County. Report, Spokane County, Spokane, WAGoogle Scholar
  24. Hanson MA, Clague JJ (2016) Record of glacial Lake Missoula floods in Glacial Lake Columbia, Washington. Quat Sci Rev 133:62–76.  https://doi.org/10.1016/jquascirev201512009 CrossRefGoogle Scholar
  25. Hooper PR (2000) Chemical discrimination of Columbia River Basalt flows. Geochem Geophys Geosyst.  https://doi.org/10.1029/2000GC000040 CrossRefGoogle Scholar
  26. Huysmans M, Peeters L, Moermans G, Dassargues A (2008) Relating small-scale sedimentary structures and permeability in a cross-bedded aquifer. J Hydro 361(1–2):41–51CrossRefGoogle Scholar
  27. Johnson DM, Hooper PR, Conrey RM (1999) XRF analysis of rocks and minerals for major and trace elements on a single low dilution li-tetraborate fused bead. Adv X-ray Anal 41:843–867Google Scholar
  28. Kahle SC, Bartolino JR (2007) Hydrogeologic framework and groundwater budget of the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho. US Geol Surv Sci Invest Rep 2007-5041Google Scholar
  29. Kahle SC, Morgan DS, Welch WB, Ely DM, Hinkle SR, Vaccaro JJ, Orzol LL (2012) Hydrogeologic framework and hydrologic budget components of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho. US Geol Surv Sci Invest Rep 2011-5124Google Scholar
  30. Kasbohm J, Schone B (2018) Rapid eruption of the Columbia River Flood Basalt and correlation with the mid-Miocene climate optimum. Sci Advan 4.  https://doi.org/10.1126/sciadv.aat8223 CrossRefGoogle Scholar
  31. Lindholm GF, Vaccaro JJ (1988) Region 2, Columbia lava plateau. In: Back W, Rosenshein JS, Seaber PR (eds) Hydrogeology, The Geology of North America. Geol Soc Am 37-50Google Scholar
  32. Northwest Land and Water (NWLW) (2012) West Plains (WRIA 54) and Lower Hangman Creek Watershed (WRIA 56) hydrogeologic characterization and monitoring well drilling. Final report. http://spokanewatersheds.org/files/documents/NLW-WRIA-54-56-Hydrogeo.pdf. Accessed 5 September 2019
  33. Northwest Land and Water (NWLW) (2014) Results for West Plains and Lower Hangman Creek sampling and analysis of groundwater samples to supplement the previous WRIA 54/56 Hydrogeologic Investigation. http://www.spokanewatersheds.org/files/documents/WRIA-54-56-Age-Dating-Stable-Isotopes.pdf. Accessed 11 May 2017
  34. Luzier JE, Burt RJ (1974) Hydrology of basalt aquifers and depletion of ground water in east-central Washington. Water-Supply Bull no. 33, State Washington Dept. of Ecology, Olympia, WAGoogle Scholar
  35. Pardee JT, Bryan K (1926) Geology of the Latah formation in relation to the lavas of the Columbia Plateau near Spokane, Washington, in Shorter contributions to general geology 1925, US Geol. Surv. Prof. Paper 140Google Scholar
  36. Price M (2002) Deriving volumes with ArcGIS Spatial Analyst. ArcUser Petroleum. www.esri.com/esri-news/arcuser. Accessed 6 January 2017
  37. Pritchard CJ (2013) Subsurface projection of the stratigraphy of the Columbia River Basalt Group and paleodrainage units in the West Plains area. Report for WRIA 54 Watershed Planning Group. http://www.spokanewatershedsorg/files/documents/Subsurface-projection-of-CRBG-stratigraphy-and-paleodrainage-delineation-in-West-Plains-Pritchard-2013.pdf. Accessed 6 January 2017
  38. Pritchard CJ, Cebula L (2016) Geologic and anthropogenic history of the Palouse Falls area: Floods, fractures, clastic dikes, and the receding falls. In: Lewis RS, Schmidt KL (eds) Exploring the geology of the Inland Northwest. Geol Soc Am Field Guide 41.  https://doi.org/10.1130/20160041(02)
  39. Puget Sound LiDAR Consortium and QSI Environment (2015) Spokane, Washington LiDAR: Puget Sound LiDAR Consortium. https://pugetsoundlidar.ess.washington.edu/. Accessed 15 November 2019
  40. Reidel SP (2005) A lava flow without a source, the Cohasset flow and its compositional components, sentinel bluffs member, Columbia River Basalt Group. J Geol 113:1–21CrossRefGoogle Scholar
  41. Reidel SP (2015) The Columbia River Basalt Group: a flood basalt province in the Pacific northwest, USA. Geosci Canada 42:151–168.  https://doi.org/10.12789/geocanj201441061
  42. Reidel SP, Camp VE, Tolan TL, Martin BS (2013) The Columbia River River Flood Basalt Province: stratigraphy, areal extent, volume, and physical volcanology. In: Reidel SP, Camp VE, Ross ME, Wolff JA, Martin BS, Tolan TL, Wells RE (eds) The Columbia River Flood Basalt Province. Geol Soc Am Spec Pap 497:1–43.  https://doi.org/10.1130/20132497(01)
  43. Samadder RK, Kumar S, Gupta RP (2011) Paleochannels and their potential for artificial groundwater recharge in the Western Ganga Plains. J Hydrol 400:154–164.  https://doi.org/10.1016/jjhydrol201101039 CrossRefGoogle Scholar
  44. Sawlan M (2017) Alteration, mass analysis, and magmatic compositions of the sentinel bluffs member: Columbia River Flood Basalt Province. Geosphere 14:286–303.  https://doi.org/10.1130/GES01188.1 CrossRefGoogle Scholar
  45. Setianto A, Triandini T (2013) Comparison of kriging and inverse distance weighted (IDW) interpolation methods in lineament extraction and analysis. J Appl Geol 5:21–29Google Scholar
  46. Smith GA (1993) Missoula flood dynamics and magnitudes inferred from sedimentology of slackwater deposits on the Columbia Plateau, Washington. Geol Soc Am Bull 105:77–100.  https://doi.org/10.1130/0016-7606(1993)105<0077,MFDAMI>23CO;2 CrossRefGoogle Scholar
  47. Spokane County, City of Spokane, City of Spokane Valley (2008) Spokane regional stormwater manual. https://www.spokanecounty.org/918/Stormwater-Utility. Accessed 15 November 2019
  48. Spokane County Water Resources (2011) West Plains hydrogeologic database. http://www.spokanewatersheds.org/files/documents/West-Plains-Hydrogeologic-Database.pdf. Accessed 11 May 2017
  49. Spokane County Water Resources (2013) West Plains hydrogeology: West Plains groundwater elevation monitoring and mapping. http://www.spokanewatersheds.org/files/documents/West-Plains-Groundwater-Elevation-Monitoring-Mapping.pdf. Accessed 11 May 2017
  50. Swanson DA, Wright TL, Hooper PR, Bentley RD (1979) Revisions in stratigraphic nomenclature of the Columbia River Basalt Group, US Geol Surv Bull 1457-GGoogle Scholar
  51. Vye-Brown C, Gannoun A, Barry TL, Self S, Burton KW (2013) Osmium isotope variations accompanying the eruption of a single lava flow field in the Columbia River Flood Basalt Province. Earth Planet Sci Lett 368:183–194  https://doi.org/10.1016/j.epsl.2013.02.003 CrossRefGoogle Scholar
  52. Waitt RB (1985) Case for periodic, colossal jokulhlaups from Pleistocene Glacial Lake Missoula. Geol Soc Am Bull 96:1271–1286CrossRefGoogle Scholar
  53. Weis PL (1968) Geologic map of the Greenacres quadrangle, Washington and Idaho, US Geol Surv Geol Quadrangle Map GQ-734Google Scholar
  54. Whiteman KJ, Vaccaro JJ, Gontheir JB, Bauer HH (1994) The hydrogeologic framework and geochemistry of the Columbia Plateau aquifer system, Washington, Oregon, and Idaho. US Geol Surv Prof Pap 1413-BGoogle Scholar
  55. Zdanowicz CM, Zielinski GA, Germani MS (1999) Mount Mazama eruption, calendrical age verified and atmospheric impact assessed. Geology 27:621–624CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Chad J. Pritchard
    • 1
    Email author
  • David R. Gaylord
    • 2
  • Drew B. Adams
    • 1
  • Shawna Ernst
    • 3
  • Michael Hermanson
    • 4
  1. 1.Department of GeologyEastern Washington UniversityCheneyUSA
  2. 2.School of the EnvironmentWashington State UniversityPullmanUSA
  3. 3.Spokane County Information Technology (GIS)SpokaneUSA
  4. 4.Spokane County Water ResourcesSpokaneUSA

Personalised recommendations