Advertisement

Development of a quantitative transport-time-based groundwater vulnerability model for non-point-source pollution in karst aquifers: a conceptual approach and example from the Tanour and Rasoun spring catchment, north-western Jordan

Développement d’un modèle de vulnérabilité quantitative des eaux souterraines basée sur le temps de transport pour des pollutions diffuses d’aquifères karstiques: une approche conceptuelle et un exemple sur le bassin d’alimentation des sources de Tanour et Rasoun, nourd-ouest de la Jordanie

Desarrollo de un modelo cuantitativo de vulnerabilidad de las aguas subterráneas a la contaminación de una fuente no puntual en los acuíferos cársticos basado en el tiempo de transporte: un enfoque conceptual y un ejemplo de la Cuenca del manantial de Tanour y Rasoun, en el noroeste de Jordania

喀斯特含水层中非点源污染的基于运移时间的地下水脆弱性定量化模型开发:约旦西北部Tanour和Rasoun泉水流域的概念方法和案例

O desenvolvimento de um modelo quantitativo de vulnerabilidade das águas subterrâneas em aquíferos cársticos, baseado no tempo de transporte de uma fonte de poluição não pontual: uma abordagem conceitual, e o exemplo da bacia hidrográfica de Tanour e Rasoun, noroeste da Jordânia

  • 21 Accesses

Abstract

A quantitative transport-time-based vulnerability assessment approach for non-point-source pollution using a spatially distributed geographic information system (GIS)-generated topographic model was developed for the karst aquifer system feeding the Tanour and Rasoun springs in NW Jordan. The approach implies the assessment of the groundwater residence times in different compartments of the karst system, i.e. the epikarst, the vadose zone and the phreatic system. Groundwater transport times within the epikarst zone were determined by employing two main variables: (1) the length of the flow path, and (2) the transport velocity between the assumed point of subsurface infiltration into the soil and the location for the actual groundwater recharge at the ephemeral streams. Sub-horizontal lateral flow is assumed for the epikarst. The base-flow recession curve method was employed to estimate the effective, average and catchment-wide transmissivity of the epikarst. Based on the calculated transmissivity, three different hydraulic conductivity values were assumed to assess the effect of the unknown average saturated thickness of the epikarst. The developed method was validated by independent measurements of the transport-time-based on the δ18O breakthrough signal in the spring catchment discharge, following a recharge event. The transport-time distribution map, calculated based on flow-path length towards the streams and average solute transport velocity, shows high correlation with the catchment-averaged stable isotopes’ breakthrough curves. Because of the intensive karstification below the stream bed, residence times in the vadose and the phreatic zones can be assumed to be negligible compared to the transport times in the epikarst.

Résumé

Une approche d’évaluation de la vulnérabilité quantitative basée sur le temps de transport pour des pollutions diffuses utilisant un système d’information géographique distribué spatialement (SIG) – modèle topographique généré – a été développée pour le système karstique qui alimente les sources de Tanour et Rasoun dans le Nord-Ouest de la Jordanie. L’approche implique l’évaluation des temps de résidence des eaux souterraines dans les différents compartiments du système aquifère, tels que l’épikarst, la zone non saturée et le système phréatique. Les temps de transport des eaux souterraines dans la zone épikarstique ont été déterminées en utilisant deux principales variables: (1) la longueur de la voie d’écoulement, et (2) la vitesse de transport entre le point d’infiltration dans le sol et la localisation de l’actuelle recharge des eaux souterraines au niveau de cours d’eau éphémères. Un écoulement latéral sub-horizontal est. considéré dans l’épikarst. La méthode d’analyse des courbes de récession à débit de base a été employée pour estimer la transmissivité effective et moyenne de l’épikarst au niveau du bassin d’alimentation. A partir de la transmissivité calculée, trois valeurs différentes de conductivité hydraulique ont été considérées pour évaluer l’effet de l’épaisseur moyenne non connue de l’épikarst. La méthode développée a été validée par des mesures indépendantes du temps de transport à partir de la courbe de restitution de δ18O au niveau de la source, à la suite d’un événement de recharge. La carte de distribution des temps de transport, calculée à partir de la longueur des voies d’écoulement vers les cours d’eau et de la vitesse moyenne de transport de soluté, montre une haute corrélation avec les courbes de restitution des isotopes stables moyennées à l’échelle du bassin d’alimentation. A cause de la karstification importante sous le lit du cours d’eau, les temps de résidence dans les zones non saturée et phréatique peuvent être considérés comme négligeables par rapport aux temps de transport dans l’épikarst.

Resumen

Se elaboró un método cuantitativo de evaluación de la vulnerabilidad de la contaminación de fuentes no puntuales basado en el tiempo de transporte, utilizando un modelo topográfico generado por un sistema de información geográfica distribuido espacialmente (SIG) para el sistema de acuíferos cársticos que alimenta los manantiales Tanour y Rasoun en el noroeste de Jordania. El método implica la evaluación de los tiempos de residencia de las aguas subterráneas en diferentes compartimentos del sistema cárstico, es decir, el epikarst, la zona vadosa y el sistema freático. Los tiempos de transporte del agua subterránea dentro de la zona epikarst se determinaron empleando dos variables principales: (1) la longitud del recorrido del flujo, y (2) la velocidad de transporte entre el punto supuesto de infiltración en el suelo y la ubicación de la recarga real del agua subterránea en las corrientes efímeras. El flujo lateral sub-horizontal se asume para el epikarst. Se empleó el método de la curva de recesión del flujo base para estimar la transmisividad efectiva, promedio y de toda la cuenca del epikarst. Basándose en la transmisividad calculada, se asumieron tres valores de conductividad hidráulica diferentes para evaluar el efecto del espesor medio saturado desconocido del epikarst. El método desarrollado fue validado por mediciones independientes del tiempo de transporte basadas en la señal de ruptura de δ18O en la descarga del manantial, después de un evento de recarga. El mapa de distribución del tiempo de transporte, calculado a partir de la longitud del recorrido del flujo hacia los arroyos y la velocidad media de transporte de los solutos, muestra una alta correlación con las curvas de avance de los isótopos estables promediados en la cuenca de captación. Debido a la intensiva karstificación debajo del lecho del arroyo, se puede suponer que los tiempos de residencia en las zonas vadosa y freáticas son insignificantes en comparación con los tiempos de transporte en el epikarst.

摘要

针对约旦西北部补给Tanour和Rasoun泉的岩溶含水层系统, 利用空间分布的地理信息系统(GIS)的地形模型开发了非点源污染的基于运移时间的脆弱性评估的定量化方法。该方法就是评估岩溶系统不同区域, 即表层岩溶, 包气带和潜水层中的地下水滞留时间。表层岩溶带内的地下水运移时间是通过两个主要变量确定的:(1)流动路径的长度;(2)假定地下入渗土壤位置与季节性河流中实际地下水补给位置之间的运移速率。表层岩溶带假定为近水平侧向流。采用基流退水曲线法来估算表层岩溶带有效平均的流域尺度导水系数。基于计算出的导水系数, 假设使用三个不同的渗透系数评估了表层岩溶的未知平均饱和厚度的影响。补给事件发生后, 根据泉水流域排泄点的δ18O穿透信号, 通过对运移时间的独立测量来验证所开发的方法。根据流向河流的流路长度和平均溶质迁移速度计算的运移时间分布图与流域平均稳定同位素的穿透曲线高度相关。由于河床下方的强烈岩溶作用, 与表层岩溶的运移时间相比, 在包气带和潜水区的滞留时间可以忽略不计。

Resumo

Para o sistema aquífero cárstico que alimenta as nascentes Tanour e Rasoun no NO da Jordânia foi desenvolvida o uma abordagem quantitativa de avaliação da vulnerabilidade baseada no tempo de transporte de uma fonte de poluição não pontual usando um modelo topográfico gerado mediante um sistema de informação geográfica (SIG) de distribuição espacial. A abordagem implica a avaliação dos tempos de permanência das águas subterrâneas em diferentes compartimentos do sistema cárstico, isto é, o epicarste, a zona vadosa e o sistema freático. Os tempos de transporte de águas subterrâneas dentro da zona epicarste foram determinados empregando duas variáveis principais: (1) o comprimento do caminho do fluxo e (2) a velocidade de transporte entre o suposto ponto de infiltração no solo e o local verdadeiro de recarga das águas subterrâneas nas correntes efêmeras. O fluxo lateral sub-horizontal é assumido para o epicarste. Para estimar a transmissividade efetiva e média da bacia hidrográfica do epicarste foi aplicado o método da curva de recessão do fluxo. Com base na transmissividade calculada, assumiram-se três valores diferentes de condutividade hidráulica para avaliar o efeito da espessura saturada média (não conhecida) do epicarste. O método desenvolvido foi validado mediante medições independentes do tempo de transporte com base no sinal de detecção de δ18O na descarga da bacia hidrográfica, após um evento de recarga. O mapa de distribuição do tempo de transporte, calculado com base no comprimento do fluxo em direção às correntes e na velocidade média de transporte do soluto, mostra alta correlação com as curvas determinação média dos isótopos estáveis capturados. ​​ Devido à intensa carstificação abaixo do leito do rio, os tempos de residência nas zonas vadosa e freática podem ser considerados insignificantes se comparados com os tempos de transporte no epicarste.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abdelhamid G (1993) Geological map of JARASH [map]. National mapping project, sheet no. (3154-I). 1 sheet: 1:50.000, Ministry of Energy and Mineral Resources - Natural Resources Authority (Geology Directorate), Amman, Jordan

  2. Abdelhamid G (1995) The geology of Jarash area: map sheet (3154-I). Bulletin 30, Ministry of Energy and Mineral Resources: Natural Resources Authority (Geology Directorate), Amman, Jordan

  3. Aquilina L, Ladouche B, Doerfliger N (2006) Water storage and transfer in the epikarst of karstic systems during high flow period. J Hydrol 327:472–485. https://doi.org/10.1016/j.jhydrol.2005.11.054

  4. Brosig K, Geyer T, Subah A, Sauter M (2008) Travel time-based approach for the assessment of vulnerability of karst groundwater: the transit time method. Environ Geol 54:905–911. https://doi.org/10.1007/s00254-007-0898-0

  5. Brouyere S, Jeannin P-Y, Dassargues A, Goldscheider N, Popescu IC, Sauter M, Vadillo I, Zwahlen F (2001) Evaluation and validation of vulnerability concepts using a physically based approach. 7th Conf. on Limestone Hydrology and Fissured Media. Mem Sci Tech Environ 13:67–72

  6. Buchanan BP, Archibald JA, Easton ZM, Shaw SB, Schneider RL, Walter MT (2013) A phosphorus index that combines critical source areas and transport pathways using a travel time approach. J Hydrol 486:123–135. https://doi.org/10.1016/j.jhydrol.2013.01.018

  7. Butscher C, Huggenberger P (2009) Modeling the temporal variability of karst groundwater vulnerability, with implication for climate change. Environ Sci Technol 43(6):1665–1669. https://doi.org/10.1021/es801613g

  8. Chang Y, Wu J, Jiang G, Liu L, Reimann T, Sauter M (2018) Modelling spring discharge and solute transport in conduits by coupling CFPv2 to an epikarst reservoir for a karst aquifer near Guilin, China. J Hydrol 569. https://doi.org/10.1016/j.jhydrol.2018.11.075

  9. Daly D, Dassargues A, Drew D, Dunne S, Goldscheider N, Neale S, Popescu IC, Zwahlen F (2002) Main concepts of the “European approach” to karst-groundwater-vulnerability assessment and mapping. Hydrogeol J 10:340–345. https://doi.org/10.1007/s10040-001-0185-1

  10. Doerfliger N, Jeannin P-Y, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environmental Geology Journal 39(2):165–176

  11. Dosa M, Holko L, Kostka Z (2011) Estimation of the mean transit times using isotopes and hydrograph recessions. Die Bodenkultur Journal 62(1–4):47–52

  12. Ettayfi N, Bouchaou L, Michelot J, Tagma T, Warner N, Boutaleb S, Massault M, Lagourna Z, Vengosh A (2012) Geochemical and isotopic (oxygen, hydrogen, carbon, strontium) constraints for the origin, salinity, and residence time of groundwater from a carbonate aquifer in the western Anti-Atlas Mountains, Morocco. J Hydrol 438–439:97–111. https://doi.org/10.1016/j.jhydrol.2012.03.003

  13. Ford D, Williams P (2007) Karst hydrogeology and geomorphology, 2nd edn. Wiley, Chichester, England

  14. Ghasemizadeh R, Hellweger F, Butscher C, Padilla I, Vesper D, Field M, Alshawabkeh A (2012) Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the north coast limestone aquifer system of Puerto Rico. Hydrogeol J 20:1441–1461. https://doi.org/10.1007/s10040-012-0897-4

  15. Goldscheider N (2003) Groundwater vulnerability (the concept of groundwater vulnerability). In: Zwahlen F (ed) COST action 620-vulnerability and risk mapping for the protection of carbonate (karst) aquifers. e-COST, Brussels, Final report, pp 5–9

  16. Goldscheider N, Andreo B (2007) The geological and geomorphological framework. In: Goldscheider N, Drew D (ed) Methods in karst hydrogeology. IAH book series no. 26, Taylor and Francis, London, pp 9–27

  17. Hamdan I (2016) Characterization of groundwater flow and vulnerability assessment of karstic aquifers: development of a travel time-based approach and application to the Tanour and Rasoun spring catchment (Ajloun, NW-Jordan). PhD Thesis, University of Göttingen, Germany. https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0028-8810-8. Accessed December 2019

  18. Hamdan I, Wiegand B, Toll M, Sauter M (2016a) Spring response to precipitation events using δ18O and δ2H in the Tanour catchment, NW Jordan. Isot Environ Health Stud 52(6):682–693. https://doi.org/10.1080/10256016.2016.1159205

  19. Hamdan I, Margane A, Ptak T, Wiegand B, Sauter M (2016b) Groundwater vulnerability assessment for the karst aquifer of Tanour and Rasoun springs catchment area (NW-Jordan) using COP and EPIK intrinsic methods. Environ Earth Sci 75:1474. https://doi.org/10.1007/s12665-016-6281-2

  20. Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52:218–242. https://doi.org/10.1002/2013RG000443

  21. Jones W (2013) Physical structure of the epikarst. acta carsologica journal 42(2–3):311–314

  22. Kavousi A, Raeisi E (2015) Estimation of groundwater mean residence time in unconfined karst aquifers using recession curves. Journal of Cave and Karst Studies 77(2):108–119. https://doi.org/10.4311/2014ES0106

  23. Ma B, Jin M, Liang X, Li J (2018) Groundwater mean transit times, mixing and recharge in faulted– hydraulic drop alluvium aquifers using chlorofluorocarbons (CFCs) and tritium isotope (3H). Hydrol Earth Syst Sci Discuss. https://doi.org/10.5194/hess-2018-143

  24. Maillet E (1905) Essais d’hydraulique souterraine et fluviale [Underground and river hydraulic tests]. Hermann, Paris

  25. Maloszewski P, Rauert W, Trimborn P, Herrmann A, Rau R (1992) Isotope hydrological study of mean transit times in an alpine basin (Wimbachtal, Germany). J Hydrol 140:343–360. https://doi.org/10.1016/0022-1694(92)90247-S

  26. Maloszewski P, Stichler W, Zuber A, Rank D (2002) Identifying the flow systems in a karstic-fissured-porous aquifer, the Schneealpe, Austria, by modelling of environmental 18O and 3H isotopes. J Hydrol 256(1–2):48–59. https://doi.org/10.1016/S0022-1694(01)00526-1

  27. Marín AI, Andreo B (2015) Characterization of karst aquifer. In: Stevanovic Z (ed) Karst aquifers-characterization and engineering. Springer (eBook), Heidelberg, Germany, pp 251–266

  28. McGuire K, McDonnell J (2006) A review and evaluation of catchment transit time modeling. J Hydrol 330:543–563. https://doi.org/10.1016/j.jhydrol.2006.04.020

  29. Morales T, de Valderrama I, Uriarte J, Antiguedad I, Olazar M (2007) Predicting travel times and transport characterization in karst conduits by analyzing tracer-breakthrough curves. J Hydrol 334:183–198. https://doi.org/10.1016/j.jhydrol.2006.10.006

  30. MWI (Ministry of Water and Irrigation) (2015a) Daily rainfall data for Ras Munif station (AH0003) for the time period between 1968/1969 and 2013/2014. Polices and Strategic Planning Directorate, Amman, Jordan (excel file format)

  31. MWI (Ministry of Water and Irrigation) (2015b) Monthly averages springs discharge for Tanour, Rasoun and Beida springs for the time period between 1963 and 2014. Policies and Strategic Planning Directorate, Amman, Jordan (excel file format)

  32. MWI (Ministry of Water and Irrigation) (2015c) Monthly Production values for Tanour and Rasoun Springs for the time period between 1996 and 2014. Policies and Strategic Planning Directorate, Amman, Jordan (excel file format)

  33. MWI (Ministry of Water and Irrigation) - BGR (Federal Institute for Geosciences and Natural Resources) (2015) Automated online regular and continuous data measurement from Tanour spring for water temperature, spring discharge and turbidity values for the winter season 2014/2015. MWI, Amman, Jordan (excel file format)

  34. Perrin J, Jeannin P, Zwahlen F (2003) Epikarst storage in karst aquifer: a conceptual model based on isotopic data, Milandre test site, Switzerland. J Hydrol 279:106–124. https://doi.org/10.1016/S0022-1694(03)00171-9

  35. Poulain A, Watlet A, Kaufmann O, Van Camp M, Jourde H, Mazzilli N, Rochez G, Deleu R, Quinif Y, Hallet V (2018) Assessment of groundwater recharge processes through karst vadose zone by cave percolation monitoring. Hydrol Process 32(13):2069–2083. https://doi.org/10.1002/hyp.13138

  36. Rorabaugh MI (1964) Estimating changes in bank storage and ground-water contribution to streamflow. Int Assoc Sci Hydrol Publ 63:432–441

  37. Sauter M (1992) Quantification and forecasting of regional groundwater flow and transport in a karstic aquifer (Gallusquelle, Malm, SW Germany). PhD Thesis, Eberhard Karls University of Tübingen, Tübingen, Germany, 151 pp

  38. Schilling KE, Wolter CF (2007) A GIS-based groundwater travel time model to evaluate stream nitrate concentration reductions from land use change. Environ Geol 53:433–443. https://doi.org/10.1007/s00254-007-0659-0

  39. Smart PL, Friederich H (1986) Water movement and storage in the unsaturated zone of a maturely karstified carbonate aquifer, Mendip Hills, England. Proc. of the Environmental Problems in Karst Terraines and Solutions conference, National Groundwater Association, Bowling Green, KY

  40. Soulsby C, Tetzlaff D (2008) Towards simple approaches for mean residence time estimation in ungauged basins using tracers and soil distributions. J Hydrol 363:60–74. https://doi.org/10.1016/j.jhydrol.2008.10.001

  41. Stevanović Z (2015) Characterization of karst aquifer. In: Stevanovic Z (ed) Karst aquifers-characterization and engineering. Springer (eBook), Heidelberg, Germany, pp 47–126

  42. Stewart MK, Morgenstern U, Gusyev MA, Małoszewski P (2017) Aggregation effects on tritium-based mean transit times and young water fractions in spatially heterogeneous catchments and groundwater systems. Hydrol Earth Syst Sci 21:4615–4627. https://doi.org/10.5194/hess-21-4615-2017

  43. Treek B (2007) How can the epikarst zone influence the karst aquifer hydraulic behaviour. Environmental Geology Journal 51:761–765. https://doi.org/10.1007/s00254-006-0387-x

  44. USGS Earth Explorer (2014) ASTER digital elevation model 30 m resolution. http://earthexplorer.usgs.gov. Accessed 2 June 2014

  45. Vias JM, Andreo B, Perles MJ, Carrasco F, Vadillo I, Jiménez P (2002) Preliminary proposal of a method for vulnerability mapping in carbonate aquifers. In: Carrasco F, Durán JJ, Andreo B (ed) Karst and environment. Patronato de la Cueva de Nerja, Málaga, Spain, pp 75–83

  46. Vias JM, Andreo B, Perles MJ, Carrasco F, Vadillo I, Jiménez P (2003) The COP method. In: Zwahlen F (ed) COST action 620: vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final report, e-COST, Brussels, pp 163–171

  47. Vias JM, Andreo B, Perles M, Carrasco F, Vadillo I, Jimenez P (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method- application in two pilot sites in southern Spain. Hydrogeol J 14(6):912–925. https://doi.org/10.1007/s10040-006-0023-6

  48. Williams P (2008) The role of the epikarst in karst and cave hydrogeology: a review. Int J Speleol 37(1):1–10

  49. Zwahlen F, Goldscheider N, Neale S (2003) Introduction to vulnerability and risk mapping for the protection of carbonate (karst) aquifers. In: Zwahlen F (ed) COST action 620: vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final report, e-COST, Brussels, pp 1–5

Download references

Acknowledgements

The authors would like to express their gratitude to Dr. Tobias Geyer, Dr. Sebastian Schmidt, Mr. Ethan Inlander, and Mr. Calvin Wolters for their helpful advice.

Funding information

The grant for Ibraheem Hamdan was funded by the Federal Ministry of Education and Research (BMBF) via the German Academic Exchange Service (DAAD) special program (NaWaM), study scholarships and research grant No. 14 (56322373).

Author information

Correspondence to Ibraheem Hamdan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamdan, I., Ptak, T., Wiegand, B. et al. Development of a quantitative transport-time-based groundwater vulnerability model for non-point-source pollution in karst aquifers: a conceptual approach and example from the Tanour and Rasoun spring catchment, north-western Jordan. Hydrogeol J (2020). https://doi.org/10.1007/s10040-019-02094-w

Download citation

Keywords

  • Karst
  • Vulnerability mapping
  • Non-point source pollution
  • Epikarst
  • Jordan