Advertisement

Environmental isotopes as indicators of groundwater recharge, residence times and salinity in a coastal urban redevelopment precinct in Australia

  • Emily HepburnEmail author
  • Dioni I. Cendón
  • Dawit Bekele
  • Matthew Currell
Report
  • 59 Downloads

Abstract

Fishermans Bend is an urban redevelopment precinct situated on the Yarra River estuary in Melbourne, Australia. Understanding the hydrogeological system is important for characterising the impacts from legacy contamination and for monitoring the effects of urbanisation on groundwater flow systems and quality. Stable isotopes of water (δ18O, δ2H) and carbon (δ13C), radioisotopes (3H, 14C) and other geochemical indicators were used to assess sources of water and salinity in the shallow groundwater. Groundwater in the upper aquifer was predominantly Ca-HCO3 dominant, with fresh to brackish salinity—189–3,680 mg/L total dissolved solids (TDS). Localised areas of Ca-SO42− and Na-HCO3 dominant groundwater were impacted by industrial activities and legacy landfills, respectively. Stable isotopes (e.g. δ18O −5.7 to −2.9‰) and tritium activities (1.75–2.45 TU) within the aquifer indicate meteoric water recharged by modern rainfall with short residence times. Carbonate dissolution from shell material, and decay of organic waste and methanogenesis in landfill-leachate-impacted bores were shown to enrich δ13C values up to −4.2‰. In contrast, groundwater in the adjacent/lower aquitard was Na-Cl dominant and saline (19,600–23,900 mg/L TDS), with molar ratios reflective of ocean water, indicating relict emplaced salts. This is consistent with 14C dating of shell material, indicating deposition in a Holocene marine environment. The presence of tritium above background levels (0.20–0.35 TU) in the groundwater, however, suggests a component of modern recharge. Salinity fluctuations within the aquitard at times of peak river level suggest the modern water source is ingress from the adjacent Yarra River.

Keywords

Coastal aquifers Urban groundwater Stable isotopes Radioactive isotopes Australia 

Utilisation des isotopes environnementaux comme indicateurs de la recharge des eaux souterraines, des temps de résidence et de la salinité dans un secteur de réaménagement urbain en zone côtière en Australie

Résumé

Fishermans Bend est. un secteur en cours de réaménagement urbain situé sur l’estuaire de la rivière Yarra à Melbourne, en Australie. Il est important de comprendre le système hydrogéologique pour caractériser les impacts de la contamination historique et pour surveiller les effets de l’urbanisation sur l’écoulement des eaux souterraines et leur qualité. Les isotopes stables de l’eau (δ18O, δ2H) et du carbone (δ13C), les isotopes radiogéniques (3H, 14C) et d’autres indicateurs géochimiques ont été utilisés pour évaluer les origines de l’eau et de la salinité dans les eaux souterraines peu profondes. Les eaux souterraines de l’aquifère supérieur sont principalement dominées par un faciès Ca-HCO3, avec une salinité reflétant la présence d’eaux douces à saumâtres—189–3,680 mg/L de matières dissoutes totales (TDS). Certaines zones restreintes présentant un faciès Ca-SO42 ou Na-HCO3 ont été impactées par des activités industrielles et des sites historiques d’enfouissement de déchets, respectivement. Les isotopes stables (ex., δ18O −5.7 à −2.9‰) et les activités en tritium (1.75–2.45 TU) dans l’aquifère indiquent une recharge par des précipitations récentes avec des temps de séjour courts. Il a été démontré que la dissolution des carbonates à partir des coquilles, la désintégration des déchets organiques et la méthanogenèse dans les puits impactés par les lixiviats des sites d’enfouissement de déchets enrichissent les valeurs de δ13C jusqu’à −4.2‰. En revanche, les eaux souterraines de l’aquitard adjacent inférieur sont dominées par un faciès Na-Cl (19,600–23,900 mg/L de TDS), avec des rapports molaires caractéristiques de l’eau de mer, ce qui indique des dépôts résiduels imprégnés de sel. Ceci est cohérent avec la datation 14C des coquilles, indiquant un dépôt dans un environnement marin holocène. Cependant, la présence de tritium au-dessus des niveaux de bruit de fond (0.20–0.35 TU) dans les eaux souterraines suggère une composante associée à une recharge récente. Les fluctuations de la salinité à l’intérieur de l’aquitard en périodes de crue de la rivière suggèrent que la source d’eau récente correspond à l’infiltration de la rivière Yarra adjacente.

Isótopos ambientales como indicadores de recarga de aguas subterráneas, tiempos de residencia y salinidad en un distrito urbano costero en vías de renovación

Resumen

Fishermans Bend es un distrito de renovación urbana situado en el estuario del río Yarra en Melbourne, Australia. La comprensión del sistema hidrogeológico es importante para caracterizar el legado de contaminación existente y para estudiar los efectos de la urbanización en los sistemas de flujo y en la calidad del agua subterránea. Se utilizaron isótopos estables del agua (δ18O, δ2H) y de carbono (δ13C), radioisótopos (3H, 14C) y otros indicadores geoquímicos para evaluar el origen de las aguas subterráneas someras así como el de su salinidad. El agua subterránea en el acuífero superior era predominantemente del tipo Ca-HCO3, con salinidad de dulce a salobre—189–3,680 mg/L de sólidos disueltos totales (TDS). Zonas localizadas donde las aguas subterráneas están dominadas por quimismos del tipo Ca-SO42− y Na-HCO3 fueron impactadas por actividades industriales y vertederos, respectivamente. Los isótopos estables (por ejemplo, δ18O −5.7 a −2.9‰) y las actividades de tritio (1.75–2.45 UT) dentro del acuífero indican la presencia de recarga de agua meteórica por las lluvias modernas con cortos tiempos de residencia. Se demostró que la disolución de carbonatos de origen marino (conchas), la descomposición de desechos orgánicos así como la metanogénesis en pozos impactadas con lixiviados del vertedero enriquecen los valores de δ13C hasta −4.2‰. En contraste, el agua subterránea en el acuitardo adyacente inferior está dominada por aguas salinas del tipo Na-Cl (19,600–23,900 mg/L de TDS), con proporciones molares que reflejan el agua del océano, indicando el emplazamiento de sales relictas. Esto concuerda con la datación de 14C en conchas marinas, lo que indica la deposición en un ambiente marino Holoceno. La presencia de tritio en el agua subterránea por encima de los niveles de cuantificación (0.20–0.35 TU) sugiere un componente de recarga moderna. Las fluctuaciones de salinidad dentro del acuitardo en los momentos de crecida del río sugieren que la fuente de agua moderna es el propio río Yarra.

澳大利亚沿海城市再开发区环境同位素作为地下水补给,滞留时间和盐度的指标

摘要

Fishermans Bend是澳大利亚墨尔本Yarra河口的城市开发区。水文地质系统的认识对于表征遗留污染的影响以及监测城市化对地下水流系统和质量影响非常重要。利用水(δ18O, δ2H)和碳(δ13C),放射性同位素(3H, 14C)的稳定同位素和其他地球化学指标来评估浅层地下水中的水和盐分来源。上部含水层中的地下水主要为Ca-HCO3为主,盐度为淡水至微咸(总溶解固体(TDS)为189至3,680 mg/L)。 地下水中Ca-SO42−和Na-HCO3占优势的局部区域分别受到工业活动和遗留垃圾填埋场的影响。含水层内稳定同位素(例如δ18O −5.7 至 -2.9‰)和氚活度(1.75–2.45 TU)表明停留时间短的现代降雨补充了大气水。从壳层中溶滤出来的碳酸盐,有机废弃物的腐烂,垃圾渗滤液影响孔中产甲烷使δ13C值富集到-4.2‰。相比之下,邻近/下游的隔水层中地下水以Na−Cl为主,盐水TDS为19,600–23,900 mg/L,摩尔比反映出海水,表明遗留了盐水。这与壳层的14C测年相符,表明他们在全新世海洋环境中沉积。但是,地下水中超过本底水平(0.20–0.35 TU)的氚含量的事实,表明地下水接受现代水补给。最高河水位时隔水层中盐度波动表明现代水源是从相邻的Yarra补给的。.

Isótopos ambientais com indicadores de recarga das águas subterrâneas, tempo de residência e salinidade em um distrito costeiro urbano revitalizado na Austrália

Resumo

Fishermans Bends é um distrito urbano revitalizado situado no estuário do rio Yarra em Melbourne, na Austrália. Entender o sistema hidrogeológico é importante para caracterizar os impactos de contaminação antiga e para monitorar os efeitos da urbanização na qualidade e nos sistemas de fluxos das águas subterrâneas. Isótopos estáveis de água (δ18O, δ2H) e carbono (δ13C), radioisótopos (3H, 14C) e outros indicadores geoquímicos foram usados para avaliar fontes de água e salinidade de águas subterrâneas rasas. Água subterrânea no aquífero superior foi predominantemente Ca-HCO3 dominante, com água doce a salobra (189–3,680 mg/L de sólidos dissolvidos totais (SDT). Áreas específicas de águas subterrâneas Ca-SO42− e Na-HCO3 dominante foram impactadas pelas atividades industriais e aterros antigos, respectivamente. Isótopos estáveis (δ18O −5.7 a −2.9‰) e atividade de trítio (1.75–2.45 TU) dentro do aquífero indicam água meteórica recarregada por chuvas modernas com curto tempo de residência. Dissolução de carbonato de material de conchas e decaimento de resíduos orgânicos e metanogênese em aterros impactados por lixiviação mostraram-se enriquecidos em δ13C, valores acima de −4.2‰. Por outro lado, as águas subterrâneas no aquitardo adjacente/inferior foi Na-Cl dominante e salina (19,600–23,900 mg/L SDT), com raio molar refletivo da água do oceano, indicando relictos de sais encaixados. Este é consistente com a datação por 14C de material de conchas, indicando deposição em ambiente marinho do Holoceno. A presença de trítio acima de níveis de referência (0.20–0.35 TU) na água subterrânea, entretanto, sugere um componente de recarga recente. Flutuações de salinidade dentro do aquitardo em épocas de cheia do rio sugerem que a fonte de água moderna é proveniente do rio adjacente, Yarra.

Notes

Acknowledgements

We would like to thank the associate editor and two anonymous reviewers for their constructive contributions to improving the manuscript.

Funding information

Funding for this work was provided by the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE).

Supplementary material

10040_2019_2077_MOESM1_ESM.pdf (1.9 mb)
ESM 1 (PDF 1971 kb)

References

  1. AECOM (2015) Desktop study and preliminary regional conceptual site model, Fishermans Bend urban renewal area. Report for EPA Victoria. http://www.epa.vic.gov.au/our-work/programs/~/media/Files/Ourwork/Programsandinitiatives/FishermansBend/FINAL-FBURA-Desktop-Study_Aug-2015.pdf. Accessed 12 January 2018
  2. AECOM (2016) Baseline groundwater quality assessment, Fishermans Bend Urban Renewal Area, Report for EPA Victoria. http://www.epa.vic.gov.au/our-work/programs/~/media/Files/Ourwork/Programsandinitiatives/FishermansBend/FINAL-FBURA-Baseline-Report_March-2016.pdf. Accessed 12 January 2018
  3. APHA (American Public Health Association) (2017) Standards for examination of water and waste water. America Water Works Association, 23rd edn. Water Environment Federation, Washington, DCGoogle Scholar
  4. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Dordrecht, The Netherlands, 58 ppGoogle Scholar
  5. Assayag N, Rivé K, Ader M, Jézéquel D, Agrinier P (2006) Improved method for isotopic and quantitative analysis of dissolved inorganic carbon in natural water samples. Rapid Commun. Mass Spectrom. 20:2243–2251CrossRefGoogle Scholar
  6. Beckett R, Easton AK, Hart BT, McKelvie ID (1982) Water movement and salinity in the Yarra and Maribyrnong estuaries. Aust J Marine Freshwater Res 33:401–415CrossRefGoogle Scholar
  7. Bruce LC, Cook PLM, Hipsey MR (2011) Using a 3D hydrodynamic-biogeochemical model to compare estuarine nitrogen assimilation efficiency under anoxic and oxic conditions. 19th Int. Congress on Modelling and Simulation, Perth, Australia, pp 3691–3697Google Scholar
  8. Bruce LC, Cook PLM, Teakle I, Hipsey MR (2014) Hydrodynamic controls on oxygen dynamics in a riverine salt wedge estuary, the Yarra River estuary. Australia Hydrol Earth Syst Sci 18:1397–1411CrossRefGoogle Scholar
  9. BOM (Bureau of Meteorology) (2018) http://www.bom.gov.au. Accessed 9 August 2018
  10. Cartwright I, Weaver TR, Stone D, Reid M (2007) Constraining modern and historical recharge from bore hydrographs, 3H, 14C, and chloride concentrations: applications to dual-porosity aquifers in dryland salinity areas, Murray Basin, Australia. J Hydrol 332:69–92CrossRefGoogle Scholar
  11. Cartwright I, Weaver TR, Cendón DI, Swane I (2010) Environmental isotopes as indicators of inter-aquifer mixing, Wimmera region, Murray Basin, Southeast Australia. Chem Geol 277:214–226CrossRefGoogle Scholar
  12. Cendón DI, Hughes CE, Harrison JJ, Hankin SI, Johansen MP, Payne TE, Wong H, Rowling B, Vine M, Wilsher K, Guinea A, Thiruvoth S (2015) Identification of sources and processes in a low-level radioactive waste site adjacent to landfills: groundwater hydrogeochemistry and isotopes. Aust J Earth Sci 62:123–141CrossRefGoogle Scholar
  13. Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen H-J, Heron G (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16:659–718CrossRefGoogle Scholar
  14. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York, pp 111–134Google Scholar
  15. Cossu R (2013) Groundwater contamination from landfill leachate: when appearances are deceiving! Waste Manag 33:1793–1794CrossRefGoogle Scholar
  16. Currell MJ, Dahlhaus P, Ii H (2015) Stable isotopes as indicators of water and salinity sources in a southeast Australian coastal wetland: identifying relict marine water, and implications for future change. Hydrogeol J 23:235–248CrossRefGoogle Scholar
  17. DELWP (Department of Environment, Land, Water and Planning) (2017) Fishermans Bend, Australia’s largest urban renewal project. www.fishermansbend.vic.gov.au. Accessed 9 August 2018
  18. EPA (Environment Protection Authority) Victoria (2013) The origin, fate and dispersion of toxicants in the lower sections of the Yarra River. Publ. no. 1529, May 2013. EPA Victoria, Melbourne, AustraliaGoogle Scholar
  19. Fink D, Hotchkis M, Hua Q, Jacobsen G, Smith AM, Zoppi U, Child D, Mifsud C, van der Gaast H, Williams A, Williams M (2004) The ANTARES AMS facility at ANSTO. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 223:109–115CrossRefGoogle Scholar
  20. Golder Associates (2012) Preliminary land contamination study, Fishermans Bend precinct Report for Places Victoria June 2012. http://www.fishermansbend.vic.gov.au/__data/assets/pdf_file/0035/29798/15_Volume_3_Preliminary_Land_Contamination_Study.pdf. Accessed 20 September 2018
  21. Hancock S (1992) Groundwater and corrosivity. In: Peck WA, Neilson JL, Olds RJ, Seddon KD (eds) Engineering geology of Melbourne. Balkema, Rotterdam, pp 223–243Google Scholar
  22. Han Z, Ma H, Shi G, He L, Wei L, Shi Q (2016) A review of groundwater contamination near municipal solid waste landfill sites in China. Sci Tot Environ 569–570:1255–1264CrossRefGoogle Scholar
  23. Han D, Currell MJ, Cao G, Hall B (2017) Alterations to groundwater recharge due to anthropogenic landscape change. J Hydrol 554:545–557CrossRefGoogle Scholar
  24. Hepburn E, Northway A, Bekele D, Liu G, Currell M (2018) A method for separation of heavy metal sources in urban groundwater using multiple lines of evidence. Environ Pollut 241:787–799CrossRefGoogle Scholar
  25. Hepburn E, Madden C, Szabo D, Coggan TL, Clarke B, Currell M (2019a) Contamination of groundwater with PFAS from legacy landfills in an urban re-development precinct. Environ Pollut 248:101–113.  https://doi.org/10.1016/j.envpol.2019.02.018 CrossRefGoogle Scholar
  26. Hepburn E, Northway A, Bekele D, Liu G, Currell M (2019b) Incorporating perfluoroalkyl acids (PFAA) into a geochemical index for improved delineation of legacy landfill impacts on groundwater. Sci Tot Environ 666:1198–1208.  https://doi.org/10.1016/j.scitotenv.2019.02.203 CrossRefGoogle Scholar
  27. Holdgate G, Norvick M (2017) Geological evolution of the Holocene Yarra Delta and its relationship with Port Phillip Bay. Aust J Earth Sci 64(3):301–318CrossRefGoogle Scholar
  28. Hollins SE, Hughes CE, Crawford J, Cendón DI, Meredith KM (2018) Rainfall isotope variations over the Australian continent: implications for hydrology and isoscape applications. Sci Tot Environ 645:630–645CrossRefGoogle Scholar
  29. Hughes CE, Cendón DI, Harrison JJ, Hankin SI, Johansen MP, Payne TE, Vine M, Collins RN, Hoffmann EL, Loosz T (2011) Movement of a tritium plume in shallow groundwater at a legacy low-level radioactive waste disposal site in eastern Australia. J Environ Radioact 102:943–952CrossRefGoogle Scholar
  30. Hvorslev MJ (1951) Time lag and soil permeability in ground water observations. US Army waterways Experiment Station Bull 36, Vicksburg, MIGoogle Scholar
  31. ISO (International Organization for Standardization) (2009) Water quality: sampling, part 11: guidance on sampling of groundwaters. International Standard ISO 5667-11. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  32. Iverach CP, Cendón DI, Meredith KT, Wilcken KM, Hankin SI, Andersen MS, Kelly BFJ (2017) A multi-tracer approach to constraining artesian groundwater discharge into an alluvial aquifer. Hydrol Earth Syst Sci 21:5953–5969CrossRefGoogle Scholar
  33. Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Env Sci Tec 32(4):297–336CrossRefGoogle Scholar
  34. Kotval Z (2016) Brownfield redevelopment: why public investments can pay off. Econ Dev Q 30(3):275–282CrossRefGoogle Scholar
  35. Lee S, Currell M, Cendón DI (2016) Marine water from mid-Holocene sea level highstand trapped in a coastal aquifer: evidence from groundwater isotopes, and environmental significance. Sci Tot Environ 544:995–1007CrossRefGoogle Scholar
  36. Leonard JG (2006) Hydrogeology of the Melbourne area. Aust Geomech J 41(3):63–74Google Scholar
  37. Melbourne Water (2018) https://www.melbournewater.com.au/water/rainfall-and-river-levels#/. Accessed 12 September 2018
  38. Mook W, van der Plicht J (1999) Reporting 14C activities and concentrations. Radiocarbon 41(3):227–39CrossRefGoogle Scholar
  39. Mulvey P (1999) Environmental monitoring of landfills. http://www.eesigroup.com/insights/environmental-monitoring-of-landfills-by-philip-mulvey-and-wendi-trotter/. Accessed 16 August 2018
  40. Neilson JL (1992) Geology of the Yarra Delta. In: Peck WA, Neilson JL, Olds RJ, Seddon KD (eds) Engineering geology of Melbourne. Balkema, Rotterdam, pp 223–243Google Scholar
  41. Price RM, Skrzypek G, Grierson PF, Swart PK, Fourqurean JW (2012) The use of stable isotopes of oxygen and hydrogen to identify water sources in two hypersaline estuaries with different hydrologic regimes. Mar Freshw Res 63:952–966CrossRefGoogle Scholar
  42. Schirmer M, Leschik S, Musolff A (2013) Current research in urban hydrogeology: a review. Adv Water Res 51:280–291CrossRefGoogle Scholar
  43. Siegel DI, Glaser PH, So J, Janecky DR (2006) The dynamic balance between organic acids and circumneutral groundwater in a large boreal peat basin. J Hydrol 320:421–431CrossRefGoogle Scholar
  44. Smith JD, Milne PJ (1979) Determination of iron in suspended matter and sediments of the Yarra River estuary, and the distribution of copper, lead, zinc and manganese in the sediments. Aust J Marine Freshwater Res 30:731–739CrossRefGoogle Scholar
  45. Stuiver M, Polach A (1977) Reporting of 14C data. Radiocarbon. 19:355–363CrossRefGoogle Scholar
  46. Tadros CV, Hughes CE, Crawford J, Hollins SE, Chisari R (2014) Tritium in Australian precipitation: a 50 year record. J Hydrol 513:262–273CrossRefGoogle Scholar
  47. UN (United Nations) (2018) 2018 Revision of World Urbanization Prospects. Dept. of Economic and Social Affairs, Population Division. https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html. Accessed 16 August 2018
  48. USEPA (United States Environment Protection Agency) (2018) Overview of the Brownfields program. https://www.epa.gov/brownfields/overview-brownfields-program. Accessed 11 July 2018
  49. Vázquez-Suñé E, Carrera J, Tubau I, Sánchez-Vila X, Soler A (2010) An approach to identify urban groundwater recharge. Hydrol Earth Syst Sci 14:2085–2097CrossRefGoogle Scholar
  50. Yeh H-F, Lin H-I, Lee C-H, Hsu K-C, Wu C-S (2014) Identifying seasonal groundwater recharge using environmental stable isotopes. Water 6:2849–2861CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Emily Hepburn
    • 1
    Email author
  • Dioni I. Cendón
    • 2
  • Dawit Bekele
    • 3
    • 4
  • Matthew Currell
    • 1
  1. 1.School of EngineeringRMIT UniversityMelbourneAustralia
  2. 2.Australian Nuclear Science and Technology OrganisationKirraweeAustralia
  3. 3.Global Centre for Environmental RemediationUniversity of NewcastleCallaghanAustralia
  4. 4.Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE)MelbourneAustralia

Personalised recommendations